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Abstract 

We report on a study to explore students' understanding of integration as an accumulation 

process in the context of physics problems in graphical and algebraic representations.  Twenty 

students in a calculus-based physics course were interviewed several times during the semester. 

In these interviews, students solved several physics problems in which information was provided 

in graphical and algebraic representations.  A facilitator interacted with the student to explore 

his/her reasoning and to provide hints whenever the student was not able to proceed.  Here we 

analyze students' performance on several integration tasks embedded in the interview problems 

on work and energy.  To solve these problems, students had to calculate work done by a force 

using the concept of integration as the area under the curve in the graphical representation or as 

the algebraic integral of force function in the algebraic representation.  We analyzed students 

ideas of integration using the theoretical framework of concept projection and found that 

although most of the students were able to recognize the use of integration, calculate the area 

under the curve and compute the integral correctly, only one student indicated an understanding 

of the accumulating process underlying those calculations.
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Introduction 

Integration is a powerful mathematical tool used in a wide range of physics problems.  In 

most problems in a typical calculus course, students are asked to compute pre-determined 

integrals.  However, in most physics problems, the integrals are not provided.  Students have to 

set up the integrals describing a physical quantity by translating the physics scenarios described 

in the problem statement into the corresponding mathematical integrals.  Hence, physics 

problems involving integration are usually difficult for students at the introductory physics level, 

not necessarily because the integrals are difficult to compute, but because they require an 

understanding of integration as the accumulation of infinitesimally small quantity to get the total 

quantity.  In this study, we analyze students’ interaction with a facilitator on several physics 

problems involving integration to investigate the extent to which students can recognize the use 

of integration and understand the accumulation process when performing integration. 

The theoretical framework for this study is the “transfer in pieces” framework proposed 

by diSessa and Wagner (2005).  Specifically, we employ Wagner’s notion of “concept 

projection” which “refers to a specific combination of knowledge resources and cognitive 

strategies used by an individual to identify and make use of a concept under a particular 

contextual condition” (Wagner, 2006, p. 10).  The range of contexts across which an individual’s 

concept projection is found to be applicable constitutes the span of that concept projection 

(Wagner, 2006).  In this proposal, we focus our discussion on three sets of interviews completed 

with 20 students in a calculus-based physics class.  The interview problems involve calculating 

physical quantities from other non-constant quantities described by mathematical functions 

provided in algebraic and graphical representations.  The design of the interviews will be 

described in the next section. 
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We investigate the concept projection of integration spanning graphical and algebraic 

representations of a function.  In the graphical representation, the concept projection of 

integration is the “area under the curve”, while in the algebraic representation, the concept 

projection of integration is the algebraic integral.  Understanding these two concept projections 

in the context of the work-energy theorem requires learners to pull together the common 

knowledge resource of “integration as accumulation” and the cognitive strategy of 

“accumulating incremental quantities to obtain the total quantity”.  The research question we 

pose in this study is: To what extent does students’ concept projection of integration span the 

context of work-energy problems that provide information in graphical and algebraic 

representations? 

Methodology 

We conducted individual teaching/learning interviews (Steffe, 1983; Steffe & Thompson, 

2000) with 20 students randomly selected from a pool of 102 volunteers enrolled in a first-

semester calculus-based physics course.  Most of the participants were freshmen or sophomore 

engineering majors with a high school physics background.  Each student was interviewed four 

times during the semester, each time after students had completed an exam in their course.  In 

three of these interviews (interviews 2, 3 and 4) students were asked to solve problems which 

required them to apply the concept of integration to solve problems using the work-energy 

principle.  The teaching/learning interview format allows the interviewer to also serve as a 

facilitator and provide scaffolding in forms of verbal hints and cues to enable the student to solve 

the problem.  The goal of this process, hence, is not merely to probe students’ knowledge, but 

also to probe how they respond to the scaffolding.  All interviews were audio- and video-taped 

and transcribed.  Students’ written work during the interview was also collected. 
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In each interview, each student was asked to solve two problems in which parts of the 

information were provided as mathematical functions in graphical and algebraic representations.  

The graphical problem is a physics problem in which part of the information was provided as a 

graph of a function.  The algebraic problem is an isomorphic problem in which the same 

information was provided as an algebraic equation. 

As part of a study reported previously, we investigated the interaction effects between 

these two representations (Nguyen & Rebello, 2009).  So, approximately half of the participants 

were given the graphical problem before the algebraic problem while the other half were given 

the algebraic problem before the graphical problem.  We found that in both cases, better 

performance was observed in the second problem (Nguyen et al., 2009).  This indicates that 

students’ performance on the second problem in the sequence was positively affected by the first 

problem.  In the present study, we are only interested in the first problem in the sequence that a 

student encountered because it better reflects students’ ability to think about integration without 

the influence of prior knowledge from the other problem. 

Findings 

In this section, we investigate students’ performance on each of the interview problems to 

see whether or not students had the concept projection of integration that spanned the graphical 

and algebraic representations in the work-energy context. 

Interview 2 

The graphical and algebraic problems are presented in Figures 1 and 2.  Eleven students 

were presented the graphical problem first and nine were presented the algebraic problem first.  

In each problem students had to calculate work done by the spring inside a gun.  To do this, 

students ought to understand that the total work done by a force was determined by accumulating 
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the infinitesimal work dW on infinitesimal distance dx  over which the force could be considered 

constant (so the relation dxFdW .=  applied).  The accumulation of the infinitesimal work dW  

could be done by integrating the force function ( )F x dx∫  when the function was given in 

algebraic representation or finding the area under the curve of )(xF vs. x  when the function was 

given in graphical representation.  This is where the concept of integration comes in and projects 

itself onto graphical representation (area under the curve of )(xF vs. x ) and algebraic 

representation ( ( )F x dx∫ ). 

Graphical Problem 

To calculate work done by the spring force in this problem, instead of finding the area of 

the curve of )(xF vs. x , students can alternatively find the slope of the graph which is the spring 

constant “ k ” and plug it into “ 21

2
kx ” where “x” is the maximum spring compression.  Ten out 

of 11 students who attempted the graphical problem first followed this strategy.  Upon being 

asked to find yet another strategy, six students recognized that the work was the area under the 

curve of )(xF vs. x after hints were given by the interviewer.  Four other students knew that area 

had some physical meaning but did not know what it was until being explicitly told the meaning 

by the interviewer.  Only one student could spontaneously recognize that work equaled the area 

under the curve of )(xF vs. x  without assistance from the interviewer. 

Algebraic Problem 

Of the nine students who did the algebraic problem before the graphical problem, only 

three students spontaneously recognized that work equaled ( )F x dx∫ .  The six remaining 

students attempted to calculate work done by the spring either by finding spring constant 
F

k
x

=  



STUDENTS’ UNDERSTANDING OF MATHEMATICAL INTEGRATION 7 

to plug in “ 21

2
kx ” or by using .W F d=  where d was the distance the bullet travelled.  Of these 

six students, three of them recognized that ( )W F x dx= ∫  after being provided the hint that force 

was not constant while the other three did not recognize this relationship until the interviewer 

explicitly told them about it. 

Interview 3 

The graphical and algebraic problems in this interview are presented in Figures 3 and 4.   

There were nine students who attempted the graphical problem first and 11 students who 

attempted the algebraic problem first.  In these problems, students had to calculate work done by 

the resistance force of a liquid by finding the area under the line of force on the graph of )(xF  

vs. x  or by computing the integral ( )F x dx∫ . 

Graphical Problem 

The difference between the graphical problem in this interview and the one in interview 2 

is that in this problem, the only way to find work is to calculate the area under the line of force 

on the graph of )(xF vs. x , while in the graph problem in interview 2, students can find spring 

constant “ k ” which equals the slope of the line and plug in “ 21

2
kx ”.  Three students 

spontaneously recognized that work equaled the area under the line.  Errors that the other six 

students made included: finding work using .W F d= , finding the slope of the line and using it 

as “coefficient of friction” and finding the slope and using it as work.  Of these six students, 

three recognized work was calculated from the area under the curve after being given hints by 

the interviewer, while the other three didn’t recognize it until being told explicitly. 
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Algebraic Problem 

Out of 11 students, four spontaneously recognized ( )W F x dx= ∫ .  Errors that the other 

seven students made included finding work using .W F d=  or finding work at two ends and 

averaging, finding “coefficient of friction” from the algebraic expression of )(xF .  A few other 

students said that they knew that work was either derivative or integral but did not know 

specifically which one.  Of these seven students, five recognized it after being hinted by the 

interviewer, while two did not recognize it until they were explicitly told so by the interviewer. 

Interview 4 

The graphical and algebraic problems in this interview are presented in Figures 5 and 6.  

Nine students were presented the graphical problem first and 11 were presented the algebraic 

problem first.  In these problems, students had to calculate work done by the rolling friction force 

along the curved part of the track by finding the area under the curve of force on the graph of 

)(θF vs. θ  together with some unit conversion or by computing ( ) ( )W F ds F Rdθ θ θ= =∫ ∫ .  

These problems are more difficult than the problems in previous interviews because the area 

under the curve or integral of the force function ( )F dθ θ∫  alone does not yield the value of 

work done by rolling friction force.  Students have to recognize that the given graph is that of 

force versus angle whereas work is the area under the curve of force versus distance, and the 

integral of the force function is ( )F dθ θ∫  whereas work is ( )F dsθ∫  in which “ .ds R dθ= ” is 

the distance along the circular track of radius R covering the angle dθ.  So these problems require 

students not only to recognize the use of the area under the curve or integral of the algebraic 

expression but also to understand the process of accumulating infinitesimal work to find the total 
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work.  In other words, students must have the concept projection of integration as accumulation 

in order to solve these problems correctly. 

Graphical Problem 

Six out of nine students who attempted the graphical problem first easily recognized that 

they had to find the area under the curve but only one of them spontaneously recognized that the 

area itself was not the work and knew that he had to convert the unit of the area to the unit of 

work, while the other five students needed hints to recognize that the area itself was not the value 

of work.  Three other students needed hints to recognize the use of the area under the curve and 

unit conversion. 

Algebraic Problem 

All 11 students recognized that they had to integrate the force function, but only one of 

them spontaneously recognized that he should have ( )F dsθ∫ instead of ( )F dθ θ∫ .  Five 

students calculated the integral of force ( )F dθ θ∫  and multiplied by the total distance.  Five 

other students just calculated ( )F dθ θ∫  and thought it was the value of work.  All of these 10 

students were able to recognize that they had to either take ( )F dsθ∫  or convert the unit after 

taking ( )F dθ θ∫  to get the correct value of work after several hints were given by the 

interviewer. 

Conclusions and Implications 

Table 1 summarizes the number of students who were able or unable to recognize the 

appropriate concept projection of integration in the relevant problem contexts presented to them 

in interviews 2, 3 and 4. 
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We answer our research question: To what extent does students’ concept projection of 

integration span the context of work-energy problems that provide information in graphical and 

algebraic representations? From Table 1, we see that most students did not spontaneously 

recognize the idea that integration was the area under the curve or algebraic integral.  This might 

imply that these students did not have the concept projection of integration spanned over 

graphical and algebraic representations of functions in the context of work-energy problems.  

Even when students spontaneously recognized that integration was the area under the curve or 

algebraic integral, there is evidence suggesting that they might not have the concept projections 

of integration that span work-energy problems in graphical and algebraic representations.  First, 

only one student in interview 4 spontaneously recognized that the values of area or integral were 

not the values of work.  The rest of the students simply calculated the area or integral without an 

understanding of the process.  Second, there were some students who realized that the area under 

the curve had some meaning but did not know what the meaning was, and others who knew that 

they had to either differentiate or integrate the function but did not know which one to do, 

indicating that most students simply remembered the strategy without understanding the 

underlying process of integration. 

Developing problem solving skills in science often requires an understanding and 

application of mathematics.  This study reveals an interesting pattern underlying students’ 

performance on the use of mathematics in science.  Students may not have a deeper 

understanding of the conceptual underpinning of the mathematical operation even though they 

can mechanically perform the operation easily.  This lack of deeper understanding is revealed 

when learners were asked to solve non-standard problems that demanded more than an 

operational knowledge of mathematical procedures.  The findings of this study suggest that 
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instructors should facilitate students not only to learn how to perform mathematical operations 

but also to understand what these operations mean.  In other words, instructors must help 

students build the concept projections for every concept they learn.  These concept projections 

must be supported by complete knowledge bases and span a broad range of contexts and 

representations.  This study is of interest to mathematics and science teachers who attempt to 

facilitate their students to build strong scientific reasoning on mathematical processes so that 

they can recognize and use them correctly in science as well as in real-world situations. 
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Table 1 

 

Summary of Students’ Performance on Integration Tasks in Our Interviews 

Interview 

‘Area Under Curve’  ‘Algebraic Integral’  

Spontaneously 

Recognize 

Recognize 

After 

Hints 

Do Not 

Recognize 

Spontaneously 

Recognize 

Recognize 

After 

Hints 

Do Not 

Recognize 

2 1/11 6/11 4/11 3/9 3/9 3/9 

3 3/9 3/9 3/9 4/11 5/11 2/11 

4 1/9 5/9 3/9 1/11 10/11 0/11 
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Figure 1.   The graphical problem of interview 2. 
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Figure 2.   The algebraic problem of interview 2. 



STUDENTS’ UNDERSTANDING OF MATHEMATICAL INTEGRATION 16 

 

Figure 3.   The graphical problem of interview 3. 
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Figure 4.   The algebraic problem of interview 3. 
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Figure 5.   The graphical problem of interview 4. 
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Figure 6.   The algebraic problem of interview 4. 

 


