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Abstract.  Developing the skills to set up integrals is critical for students’ success in calculus-based physics courses.  It 

requires a high level understanding of both math and physics concepts.  Previous studies have shown that students 

encounter a lot of difficulties when setting up integrals in the context of electricity and magnetism.  However, the causes 

of students’ difficulties have not been carefully studied in the past.  In order to understand students’ solutions and 

mistakes from a resources perspective, we conducted group teaching/learning interviews with 13 engineering students 

enrolled in second-semester calculus-based physics.  We identified mathematics and physics resources activated by 

students and used the resource graph representation to describe students’ coordination of various resources.  The 

findings of this study provide further insights into students’ difficulties with physics problems requiring integration. 
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INTRODUCTION 

Mathematical integration is widely used in many 

physics topics (e.g., electricity and magnetism).  To 

fully understand and apply physics concepts, it is 

important for students to develop the skills of using 

integration in physics.  A far more important goal for 

students is to invent their own integrals in new 

problem situations.  Students from calculus are often 

good at evaluating a pre-determined integral, but they 

do poorly when setting up integrals in a physics 

problem [1,2].  Physicists use mathematics in a very 

different way than mathematicians do as the purpose 

of mathematics in physics is representing meaning 

about physical systems rather than expressing abstract 

relationships [3].   

Many studies have investigated the difficulties 

students encounter with the use of integration in 

physics [1,4,5]. One of the major difficulties with 

setting up integrals involves interpretation of 

mathematical notations-differentials or infinitesimals 

(e.g., dx, dr, dE) [1,6].  We find that students interpret 

the meanings of differentials in various ways in 

different problem solving contexts.  We explore 

students’ difficulties from the manifold perspective, in 

which one’s conception is determined by activation of 

resources depending on the context [7,8].  In this study, 

we are interested in the mathematics and physics 

resources students bring in with the use of differentials.  

Students often activate a variety of resources in a 

scenario and those resources are not isolated from each 

other.  Thus, resources graphs [9] are used to show 

how the activation of one resource is linked to another 

and this representation provides a more complete 

picture of student reasoning in a given setting.  Our 

work is an extension of Meredith & Marrongelle’s 

work about the resources students used to cue 

integration [10].  They explored students’ reasoning 

about why integration is needed, while we expand her 

work to explore students’ resources used to set up 

infinitesimal equations -- a critical step for setting up 

integrals.  We address the following research questions: 

1. What mathematics and physics resources 

associated with differentials do students activate? 

2. How do students coordinate their resources in a 

given problem scenario? 

METHODOLOGY 

We conducted group teaching/learning interviews 

[11] with 13 participants selected from a pool of 40 

volunteers in a second-semester calculus-based 

physics course for engineers at a Midwestern 

university.  All participants had taken pre-requisite 

calculus of single variables.  Eight of these had 

previously taken and five were concurrently taking 

calculus of multi-variables.  

Students were organized in five groups of two or 

three students each.  The interviewer met with each 

group separately.  During the interviews, students 

discussed problems together on a whiteboard.  In total, 

eight 75-minute long interviews were completed over 

the semester.  Each interview occurred within one 

week after students covered the related concepts in 

class.  The problems discussed here are in the context 

of electricity & magnetism.  Interviews were 

videotaped and coded for the analysis. 



DATA ANALYSIS AND RESULTS 

In viewing the videos we found several kinds of 

reasoning resources about differentials that students 

frequently use in different settings.  We identified 

interesting episodes of students using these resources 

and transcribed them for detailed analysis.  

Here we discuss three major resources that were 

prevalent in students’ work:  a “small piece/segment,” 

a “point,” and “differentiation.”  We provide examples 

of how students use these resources and draw resource 

graphs [9] to represent the network of students’ 

resources used in a given situation.   

“Small Piece/Segment” 

Differential terms (e.g., dx, dr, dE) in physics 

equations often contain specific physical meaning 

based on physical systems.  In an electric field 

problem (Fig. 1), to set up the equation for total 

electric field at point P, the traditional approach 

physicists would take consists of three major steps.  

The first step is to chop the whole rod into 

infinitesimal pieces each of length dx, carrying an 

infinitesimal charge dq. Then the second step is to set 

up the equation for dE (Equation 1), which is the 

infinitesimal electric field at P due to dq (Equation 2). 

Finally, the last step is to integrate dE to get total 

electric field E.   

 

 
FIGURE 1. Electric field problem 
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The following transcripts are from a group of two 

students discussing how to find the equation for dq.  

1 Dave: I guess we can do separating little 

2 segments of dq. 

 

They then set up the equation for dE (Equation 1) 

and dq (Equation 2). The interviewer (“I”) comes over 

and asks them to explain both equations.  Dave mainly 

explains the equation for dE (Equation 1) and Alice 

explains the equation for dq (Equation 2)  

3 Dave: Well, since this is just the value that a  

4 particular line segment is putting onto our P, 

5 then that would only be a tiny segment of the 

6 charge, which is what we described as dq…  

7 I: Okay, can someone explain this equation?  

 [points to equation 2] 

8 Alice: Well, we have a charge Q over the entire 

9 length of L, so this is just saying when you have  

10 a little piece, cause you can write it differently,  

11 you can write it as 
dq

dx
=

Q

L
. So then it is just a ratio  

12 of a whole charge over the whole length to a little  

13 bit of charge over a little bit of length. 

 

When describing the differential terms, both Dave 

and Alice frequently use the phrases “a line segment” 

or “a little bit of length” for dx and “a tiny segment of 

charge” or “a little bit of charge” for dq.  It seems that 

students consider “d” to refer to a “small piece or 

segment” of a physical quantity in this context.  In 

other words, they apply resources of a “small 

piece/segment” with their use of differentials.  To 

illustrate how students coordinate resources to set up 

an equation for dq, a resources graph is drawn in Fig. 2. 

 

 
FIGURE 2. Resources graph for group 1 

 

In lines 1 and 2, David starts with “separating little 

segments,” and then sums up the effect due to each 

segment.  He appears to be invoking “parts-of-a-whole” 

resources by interpreting the integral as a sum of many 

contributions [10,12]. Then students seem to activate a 

“small piece” resource for dq, and a “small length” 

resource for dx.  Finally, they relate these by a ratio.  

“Point”  

When solving electric field problems, we find that 

students often interpret differentials dx and dq as point 

quantities.  Physicists use “point” as an ideal physics 

model.  When the size of an object can be neglected 

compared with the dimensions we are considering, we 

view the object as a point.  It is by far the easiest and 

most commonly used model across many physics 

contexts.  Thus, a “point” is a physics resource.  

For the problem in Fig. 1, dq is the amount of 

charge carried by dx and it is acceptable to view dq as 

a point charge as it is extremely small.  However, 

students’ insufficient use of the “point” resource leads 

to their difficulties when setting up the equation for dq.  

Below, two students discuss the problem in Fig. 1.  

14 Aaron: Well, we gonna to find like, would be  

15 like summing up little charges at every point? 

16 Kelly: Yeah, so it’s dq, Q/L? 

 

After this brief conversation, Kelly writes down an 

equation for dq (Equation 3), but later on, she adds dx 

on the right side of this equation when they start to set 

up an integral for total electric field.  We suspect that 

Parts-of-

a-whole 

A small piece of 

charge 

A small length 
Ratio 

1. An insulated thin rod with length L has charge +Q 

uniformly distributed over the rod. Point P is located at a 

distance d from the right end of the rod. Find the electric 

field at point P due to this charged rod. 


P



students realize that something is missing on the right 

side as they need the variable of integration eventually. 

In the following conversation, the interviewer asks 

students to explain their thinking. 

L

Q
dq                        (3) 

  
17 I: Can you guys explain this equation? What is 

18  the meaning of this equation? 

19 Aaron: The charge at every single point is  

20 charge divided by the distance. 

Later, they continued 

21 Kelly: Basically, the point charge is at each  

22 point along L, is the total charge over its  

23 length, so like what’s it called?  

24 Aaron: Charge density  

Later, the interviewer prompted 

25 I: So what does dq mean exactly? 

26 Aaron: We knew we have to use integral to  

27 sum everything up. We need to know what  

28 we are summing up the whole time, so we  

29 have to find… 

30 Kelly: Just find the little charges by taking the 

31 total charge over the length it’s over, to find… 

32 since it’s uniform, we can find the charge  

33 every point. 

 

In lines 14 and 15, Aaron starts to talk about 

“summing up little charges” which we code as “parts-

of-a-whole” resource for using integration.  Then 

students activate the resources of “point charges” for 

setting up the infinitesimal equation dq.  We notice 

that students keep using the terms “charge at a point” 

or “point charge” to describe dq.  In fact, a “point” 

could have two different meanings: one represents a 

location in space and the other describes the 

characteristics of an object which is physically 

negligible.  In the interview, students use “charge at a 

point” and “point charge” interchangeably and there is 

no evidence that they realize they two could mean 

different things.  However, in this context, students 

talk about “summing up (the effect due to) little 

charges” (line 15). Thus, we suspect that it is more 

likely that students think of a “point” as representing 

an object with negligible physical size. In both lines 20 

and 31, students think “charge at a point” is equal to 

the ratio “total charge over the length.”  If there were 

discrete charges distributed and each point carried the 

same amount of charge, the charge at each point is the 

total charge divided by the number of points.  

However, there is no discrete charge distribution.  To 

relate the point charge with the ratio, students must 

consider the length of the rod as a proxy for the 

number of points on the rod.  The resources graph (Fig. 

3) depicts students’ resources in this conversation. 

 

FIGURE 3. Resources graph for group 2 

“Differentiation” 

As students have solved many problems involving 

differentiation or integration in mathematics, they 

might have developed their own way of thinking about 

what differentials mean.  During the interviews, some 

students tended to use differentials as a cue to 

mathematical operation such as differentiation or 

integration.  In an example of a resistor problem (Fig. 

4), students were reminded of the physics equation for 

resistance (Equation 4) which they learned previously 

in their lecture. To find the total resistance, the typical 

approach experts would use involves first chopping 

this whole cylinder into infinite numbers of small 

disks, finding the resistance of each infinitesimally 

thin disk dR (Equation 4), and integrating dR.   

 

 
FIGURE 4. Resistor problem 

 

Two students invent a wrong approach to set up an 

integral.  They start with the basic resistance in 

equation (4), and plug in the resistivity function to get 

another equation (5). Then they find dR by taking the 

derivative with respect to x (Equation 5)   
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34 I: So why did you take the derivative of this? 

35 Zad: Um, because we just plugged it into, we 

36 plugged what R was, into the integral of R  

37 basically. So we need to take the derivative of it. 

38 So we can plug into R. Because we basically pull  

39 dx out of nowhere, because the derivative of the 

40 only changing function, then we require dx, we 

41 need to integrate that. 

Later, they continued 

42 Zad: We have the function, you have to take the  

L 0 

A material with length L and cross-sectional area A lies 

along the x-axis between x=0 and x=L. Its resistivity 

varies along the rod according to  ( ) =  
 
   x L. Find 

the total resistance of this cylinder between two end faces. 

x

Parts-of-a-

whole 

Point 

charges 

Point on a 

rod 

Ratio 



43 derivative so you can take the integral. I don’t  

44 know how to explain it other than mathematically. 

45 Alan: Just, you need to take the integral across 

46 the whole thing. So in order to do that, we 

47 have to do a derivative, but it’s basically just 

48 taking the difference from one to the other. 

 

In lines 40 and 42, by talking about “changing 

function” or “function,” Zad is focusing on the 

resistivity of the cylinder which is a function of x.  We 

also have evidence from an earlier conversation that 

Zad uses the function as a cue for integration.  Thus, 

we recognize that Zad activates the symbolic form of 

“dependence” which is described in Sherin’s work as 

“a whole depends on a particular symbol that appears 

in the expression” [12].  The dependence resource was 

identified as a cue for using integration in earlier work 

[1,10].  Upon realizing that integration is needed, Zad 

applied the resources of “taking derivative” when 

setting up dR.  The resource graph is shown in Fig. 5. 

 

 
FIGURE 5. Resources graph for group 3 

SUMMARY 

We identified three resources students used while 

applying differentials in physics integration problems.  

A “small piece/segment” resource refers to a small 

portion of a physical object.  In the electric field 

problem, upon activating a “small segment” resource, 

students in group 1 successfully related dx with length 

and dq with charge of a small line segment.  They 

correctly set up the expression for dq which relates a 

small piece of charge with a small piece of length dx. 

A “point” resource is typically used when the 

physical size of an object can be neglected.  In the line 

of charge problem, students in group 2 view the 

continuously distributed line charge as a collection of 

point charges. In order to find the amount of charge at 

each point, they used the total charge divided by total 

length of the rod.  It is plausible that students consider 

the length of the rod as a proxy for the number of 

points in order to set up a seemingly reasonable 

expression for dq. It is appropriate to use a “point” 

resource, but it is insufficiently used by students.  The 

“differentiation” resource indicates that students 

consider “d” to be a mathematical operator without 

concrete physical meaning that they “basically pull out 

of nowhere.”  Activation of this resource leads 

students to invent an approach which they do not know 

how to explain “other than mathematically.”  

Appropriate scaffolding must be provided when 

students activate a resource or link resources in ways 

that are unproductive.  When activating a “point” 

resource, possible strategies might include asking 

students to perform a unit analysis or a comparison 

between discrete and continuous charge distribution.  

For students activating a “differentiation” resource, it 

might be helpful to guide them through a qualitative 

analysis of why and how integration is used before 

they begin to use mathematical symbols and equations.  

This article reports on three conceptual resources 

related to differentials.  However, there might be other 

resources which are not identified given that the 

student population is small. Due to the limits of paper 

length, we only present examples of student work in 

two physics contexts. Within the three resources, some 

resources strongly rely on the context but others are 

widely used in many contexts.  For instance, a “point” 

resource is used by some students in contexts 

involving a straight or curved line (e.g., a line or arch 

of charge); whereas a “small piece/segment” resource 

is used by students in various physics contexts (e.g., 

potential integral, Ampere’s law).  
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