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We present data from a between-student study on student response to questions on Newton’s third law

given in two introductory calculus-based physics classes (Mechanics and Electromagnetism) at a large

northeastern university. Construction of a response curve reveals subtle dynamics in student learning not

capturable by pretesting and post-testing. We find a significant positive effect of instruction that

diminishes by the end of the quarter. Two quarters later, a significant dip in correct response occurs

when instruction changes from the vector quantities of electric forces and fields to the scalar quantity of

electric potential. When instruction returns to vector topics, performance rebounds to initial values.
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I. INTRODUCTION

Research on forgetting and interference [1–4] shows that
learning is very subtle, and often time dependent, with
even significant gains sometimes short lived. Sayre and
Heckler have applied the between-student ‘‘response
curves method’’ (RCM) [5,6] to physics classes. In the
RCM, data are collected regularly through the academic
term with comparison between different groups of
students. While this requires significantly larger student
populations—and overhead on grouping—when success-
ful it allows for a much more detailed picture of student
understanding before, during, and after instruction.

Pretesting and post-testing of students is virtually the
standard for assessing learning in large physics classes [7].
Thornton and Sokoloff [8] used the method to establish the
validity of the Force andMotion Concept Evaluation and to
demonstrate the efficacy of active engagement classrooms,
a study reproduced on a much larger scale by Hake [9].
Pretesting and post-testing fails, however, to reveal the rich
dynamism of student learning. In physics education
research, researchers often turn to interviews and case
studies to investigate this dynamism. While these methods
gather rich data and make robust observations, they are
resource intensive and (consequently) follow smaller num-
bers of students. In the RCM, we balance resource

constraints against a need to study the dynamism of student
understanding in large enrollment classes. While our data
are not as rich as interviews, they are substantially more
complete than pretesting and post-testing will allow (in the
limits of very large enrollments).
In this paper, we present two variations on the RCM,

contrast them to prior work, and present data on the dyna-
mism of student understanding of Newton’s third law
(N3L).
Newton’s third law is an especially interesting topic to

study throughout the introductory physics curriculum. A
typical mechanics class, the first of a physics sequence, has
a fairly canonized topic order: kinematics, forces, energy,
momentum, torque, and angular quantities. N3L is thus
introduced in the second unit of the course, allowing for a
few weeks of preinstruction data collection. After the
forces unit, a seemingly unrelated topic allows students’
ideas about N3L to relax back towards the preinstruction
state. In the momentum unit, N3L is again emphasized
(usually in the context of collisions). There are typically a
few weeks remaining in the term after the momentum unit,
allowing for postinstruction data collection in addition to
the two opportunities during instruction. Past research on
students’ understanding of N3L has focused on the differ-
ences between different instructional methods [10–13] or
N3L as a convenient topic for investigating deeper issues in
student understanding [8,14–16]. This paper follows the
latter tradition. A first course on electromagnetism typi-
cally follows the mechanics course. Even though N3L is
still important in electromagnetic contexts, the law is
emphasized less during instruction (which commonly
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focuses on fields instead of interaction forces). Tracking
students’ understanding of N3L during an electricity and
magnetism (E&M) course should reveal longer-term
effects of instruction as well as any interference effects
between E&M material and older N3L ideas.

II. THEORETICAL FRAMEWORK

The field of cognitive psychology offers many reasons to
suspect that student performance is complicated and time
dependent. Learning curves, such as those predicted by the
Rescorla-Wagner model [3], show that for repeated train-
ing, scores increase quickly at first, then level off. This
simple error-reduction model assumes that the amount of
learning depends on the difference between perfect and
actual performance, and matches empirical data in a wide
array of simple learning tasks in a variety of species,
including humans. ‘‘Forgetting curves,’’ such as those
studied by Ebbinghaus [17], reveal that memory perform-
ance decays exponentially after training ceases, eventually
reaching a new minimum value, and have been demon-
strated in a wide variety of tasks and time scales (from
seconds to decades).

A third phenomenon, interference, occurs when two
pieces of related information (or tasks) are learned.
Performance on one can significantly decrease when the
second is learned either before (proactive) or after (retro-
active), and the amount of interference increases with the
degree of similarity between the two pieces of information
[1,4]. For example, student performance on questions in-
volving the vector superposition of electric fields falls
below preinstruction levels during subsequent instruction
on the scalar concepts of electric potential and circuits [5].
Responses can be brought back up to their peak levels
during instruction on the vector-based topic of magnetic
fields. However, electric and magnetic fields have different
effects on charges—though they are both vector fields—and
a similar degradation can be seen in students’ understanding
of electric forces during the magnetic fields unit [18].

Students’ understanding of these related, but different,
phenomena is decidedly nonmonotonic. There is good
evidence to suggest that nonmonoticity of performance
and understanding is a universal human learning phe-
nomena which is not limited to the university physics
classroom. (For excellent overview articles, see Siegler
[19].) The common pretesting and post-testing is woefully
insufficient to investigate the dynamism of student
understanding. Furthermore, given the short time scales
over which scores may change dramatically, changing the
timing of either pretests or post-tests may artificially alter
calculated gains.

Instructors are not blind to these effects: conventional
wisdom states that students will forget much after an exam.
From another perspective, many students believe that
cramming before an exam will increase their score on the
exam. Using the RCM, we can test whether instructor’s

pedagogical content knowledge on this topic is supported
by data, a heretofore unstudied proposition.
Phenomenologically, we divide postinstruction changes

in performance into two categories: that which is charac-
terized entirely by negative slope (though often positive
second derivative, as with exponential death) and that
which is characterized by changing signs of slopes, i.e.,
bumps or dips. In this paper, we focus on changes of the
second sort, noting that their effects may be dwarfed by
changes of the first sort. Because these bumps or dips
always occur concurrently with instruction on related but
different topics, we conceptualize them as an interference
effect between older and newer material [20].
This phenomenological description may have several

underlying causes. As a trivial example, consider that
performance on these tasks may be the combined
result of several independent skills which increase or de-
crease monotonically at different rates and intercepts.
Superposition could produce an apparent series of bumps
and dips. While it is mathematically possible to model our
data in this manner, the number of free parameters is quite
large and we seek a more parsimonious model.
It is also possible that new ideas may be improperly

extended to cover old material, causing destructive inter-
ference between old and new. The interference may resolve
itself when the new material is properly limited in scope or
forgotten altogether. In these cases, we can expect that
performance afterwards returns to nearly the same level
as beforehand. Alternately, new ideas may simply be diffi-
cult to incorporate and thus temporarily ‘‘crowd out’’ older
ones as part of the normal process of conceptual change
[21]. During the change, a temporary dip is followed by a
more durable bump in both old and new material. The
former explanation reduces to low connectedness [22]
learning, while the latter reduces to high connectedness.
Both explanations fit learning under the resources model
via plasticity [23], while the latter is more amenable to
horizontal and vertical conceptual reorganization [24].
Without access to ongoing data over many weeks or years
(and perhaps in-depth qualitative data as well), it is not
possible to distinguish between these explanations. We
limit ourselves to a phenomenological approach here.

III. METHODS

A. Population

This study took place at a northeastern, large, four-year
private university with high undergraduate enrollment and
no graduate program in physics, code named the
‘‘Institute.’’ The year is divided into four 10-week quarters
(including a summer term).
Each year � 2400 students take introductory calculus-

based physics, which is offered in a workshop format that
integrates lecture, experiment, and short group activities.
Adapted after the SCALE-UP project [25], the classes meet
for three 2-hour sessions each week, with students seated at

SAYRE et al. PHYS. REV. ST PHYS. EDUC. RES. 8, 010116 (2012)

010116-2



tables of six and working in small groups. Classrooms
accommodate up to 42 students, with enrollment in each
section varying. Engineering students dominate the popu-
lation, comprising 57%–83% of the students in Mechanics
and 65%–83% of E&M students. Most students begin the
sequence in the winter of their freshman year.

Our study has two phases. In the first phase, we tested
students in the first (Mechanics) and third (E&M) courses
during the fall and winter quarters of the 2009-2010 aca-
demic year. In the second phase, we tested students in all
three courses in all three quarters of the 2010-2011 school
year. The syllabus is unchanged, so we collapse our data
across multiple quarters (by week) to increase sample size.
Participation for each course and phase is summarized in
Table I.

The majority of the students begin the 3-quarter se-
quence in the winter of their freshman year, concluding
with E&M in the fall of their second year. Second-year and
older students, taking the course later in their career than
normal, make up 81% (128=139) of the off-sequence
Mechanics class (see Table II).

B. Methodology

We use variants of the RCM developed by Sayre and
Heckler [5]. The RCM allows researchers to probe student
understanding via short quizzes administered frequently
throughout a course or series of courses, subject to the
following constraints:
(a) Each conceptual topic is tested in only one task, to

avoid false isomorphism between different ques-
tions which purport to be about the same topic.

(b) Each student is tested on each task only once, to
avoid test-retest effects.

(c) Each topic is tested every time period (week, day,
month, etc.).

A ‘‘task matrix’’ which satisfies these constraints is
constructed at the beginning of each term. To explore
them, consider an m-week course in which n students
enroll and we wish to investigate student understanding
on a weekly basis. If we would like each student to take a
task every week (so that it becomes habit), then by con-
straint 2 we need ‘ different tasks, where ‘ � m. To test
each task every week (constraint 3), then we need at least ‘
groups of students, each of which has N=‘members. In the
limit of large enrollments, the random assignment of stu-
dents to groups means that (statistically) the groups are
indistinguishable from each other, and the only differences
between groups in performance on a specific task is due to
the effects of instruction (because groups are tested in
different week per constraint 2). Creating a task matrix
can be a nontrivial task; however, it is not insurmountable.
Of course, more frequent testing is possible: in the

original RCM, testing occurred 3–5 times each week [6],
with a concomittant loss of statistical power (given the
same total population). Less frequent testing is also pos-
sible if enrollment numbers do not support weekly testing.
The original RCM required that every student visit the

research laboratory for 1 hour of testing. This is extremely
time intensive for researchers, who must sign up, remind,
proctor, and (in some cases) reschedule hundreds of
students in a quarter. After proctoring, researchers must
digitize the paper-based data in preparation for analysis. In
this study, we tested two variants to the RCM which are
intended to reduce the overhead to testing.

TABLE I. Study population for fall and winter divided by
course. In the fall, the primary course is E&M, and in the winter,
the primary course is Mechanics.

Fall Winter Total

Course No. of section N No. of section N N

Mechanics 5 142 14 441 583

E&M 8 257 5 144 401

TABLE III. Methodology affordances and limitations.

Feature Original RCM Phase 1 Phase 2

Each student participates Once for 1 hour Every week for 5-10 minutes

Instructors Mention the project in class Administer quizzes weekly Mention the project in class

Groups are determined By which students

participate each week

By enrollment in different

course sections

Randomly at the

start of term

Data are collected On paper in the research lab On paper during class Online, unproctored

Data are digitized and reduced By hand, laboriously Automatically

Reports of student

progress are available

After the term Instantly

TABLE II. Demographic data for students taking the tasks.
Mechanics is typically taken in the winter quarter of students’
first year. Students typically take E&M in the fall of their second
year. Women make up 14%–24% of the students.

Gender Year

(Male/female) 1 2 3–6

Fall 2009 Mechanics 117=20 26 81 47

Winter 2009 Mechanics 337=89 393 21 24

Fall 2009 E&M 201=51 1 201 54

Winter 2009 E&M 107=34 1 110 39
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In both RCM variants, each student participates every
week for 5–10 minutes instead of once for 1 hour. The
details of these changes are summarized in Table III.

1. Phase 1: Paper

The Institute’s system of many sections per course
makes it ideal for a paper-based between-student study.
In the first phase of our study, we administered the tasks on
paper each week in class. Because students are already in
class, researchers do not have to schedule and proctor them
in special sessions, and students do not have to remember
to attend a special research session.

The groups have similar grade, cumulative grade point
average (GPA), major, and gender distributions. (The study
design precludes testing multiple groups on N3L at the
same time.) Students had � 10 minutes to complete each
task, which were sometimes appended to an instructor-
generated quiz.

This method still requires significant researcher time in
data collection and digitization for researchers. It requires
a small amount of class time every week, which some
instructors might be loathe to give up. Furthermore, be-
cause each course section is a different group, it is possible
that some instructors are better than others, artificially
skewing the data in some weeks. While the phase 1 design
cannot test the instructor effect easily, the phase 2 design
(detailed below) can test it easily, and has found it to be not
statistically significant.

2. Phase 2: Electronic

To enhance the method’s applicability to larger classes
and substantially streamline early analysis, we developed a
web-based testing system. The rapid analysis and web
reports (RAWR) system automates task administration
and is accessible from any modern web browser. It further
simplifies subject pool management and data collection
and reduction for researchers. For instructors, it reduces
the strain on class time as well as providing real-time
reports of their classes’ learning and forgetting which can
be used to modify instruction.

The RAWR system runs on an entirely open-source and
free platform. The student and instructor interfaces are
web based and interface with the Institute’s online course
delivery system (myCourses). Students see it as an exten-
sion of a familiar Institute system, using the same user
name and password that they do for all Institute-related
systems. Demographic information, informed consent, and
task results are stored in a relational (mySQL) database for
easy retrieval. Reports, statistics, and graphs are generated
using php scripts that interface with R, an open-source
statistics package. This allows us to automate many
different types of analyses, including questions useful to
researchers as well as instructors.

Instructors announce the RAWR project to their students
early in the quarter. Instructor policy varies, with some

giving small amounts of participation credit and heavily
stressing their commitment to the project. Others mention
it only a few times, and give no credit. Confirming that
participation is independent of instructor is therefore an
important first step to validating the system, and is de-
scribed below.
Students register on our site and are first asked for

informed consent. Their participation is still expected
(by their instructor) regardless, but data from students
who do not consent are not included in this study.
Approximately 8% of students either withhold consent or
drop the course after the second week and are not included.
Students also provide demographic data such as gender,
major, and prior math and physics courses, which are
correlated with later test results.
Students are assigned into 10 groups per course. Group

membership is randomly assigned, with each group having
25–45 students. Each group takes a different task every
week, and each task is assigned to a different group every
week. Students cannot see which task they will take until
the time it opens for completion. Typically, tests become
available on Monday of each week and are due on
Wednesday. Students may log in at any time to complete
the task, although there is a 30 minute time limit once they
start the test. We record both their starting time and com-
pletion time to test whether students take enough time to
read the questions entirely. RAWR automatically Emails
students each week to remind them to take the tasks as they
become available.
When students complete tasks on RAWR, it records their

responses, the time that they accessed the task, and the time
of completion. While students are permitted to take up to
30 minutes to complete a task, the tasks are designed to be
completed in 5–10 minutes. Any response which takes less
than 30 seconds to complete is removed from further
analysis.
Because groups are statistically independent, we can

compare the performance of different groups across
weeks, essentially capturing student understanding on a
weekly time scale. A time plot of average performance,
termed the response curve, is sensitive to the particulars
of the week—the current topic of instruction and coin-
cidence with exams or homework. The conventional
pretest and post-test corresponds to the first and last
points on the curve, and can miss much of the dynamic
evolution of understanding.
Participation in phase 2 is significantly lower than in

phase 1. Roughly half the students take seven or more tasks
in phase 2. When the tasks were given as in-class quizzes,
participation each week was closer to 85%, but we did not
track individual student participation.

IV. DEMOGRAPHICS AND PARTICIPATION

It is possible that students’ demographics affect their
score on N3L; it is also possible that selection effects of
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which students participate in the study could skew our
results.

We collect demographic information from students
about gender, year in school, major, and prior physics
courses. Additional information is available from the
Registrar of the Institute, including cumulative GPA and
course grade (on completion of the course).

A. Participation rates

In phase 1, approximately 95% of enrolled students
participated in the study each week. With participation
rates that high, no further analysis of selection effects are
warranted. In phase 2, participation rates dropped substan-
tially. Analysis of variance (ANOVA) tests were conducted
to determine whether the course (Mechanics, Waves, or
E&M), section, professor, or major were significantly cor-
related with the participation rate in phase 2. For the fall
and winter quarters, none of these factors was significant,
with p > 0:1 for all combinations. Course and professor
were marginally significant (p ¼ 0:035) for the spring
quarter, although the professors for this quarter were, for
the most part, the same as previous quarters.

The grade achieved in the course was statistically sig-
nificant (p < 0:001), as was the student cumulative GPA at
the time of taking the course. This latter can be seen in
Fig. 1, which groups students within a particular rate by
GPA. Note the significantly larger percentage of students
with a GPA less than 2.5 (bottom two segments in each bar)
who answer 0, 1, or 2 tasks. This correlation is also shown
in Fig. 1, where GPA is plotted versus the number of
completed tasks.

We also notice a small gender bias, with women slightly
more likely to participate, as shown in Fig. 2. Sixty-three
percent of women took 7 or more tasks, compared with
only 50% of men. This was statistically significant in the
fall and winter quarters (as shown); the spring quarter
showed a smaller gap (women, 58%; men, 50%) that was
not statistically significant (p ¼ 0:1).

B. Gender, major, and GPA

To measure demographic effects, we use multilevel
modeling to estimate the influence of gender, major, and
GPA on students’ scores. Additionally, we test whether
students’ high school physics courses have an effect on
their N3L knowledge in Mechanics.
We are interested in how majors and genders may have

different impacts on the students’ performances on the
task. Therefore, we need to include both student-level
and group-level indicators, but classical regression either
tends to ignore group effects or it may include group
effects while still ignoring interactions among groups.
However, the demographic group sizes in our study vary
a lot. For example, we have about 100 physics majors but
only several psychology majors. Simply using the local
information is fraught if the sample size is small in the
group, but regression ignoring group indicators can be
misleading in ignoring group-level variation. Multilevel
modeling allows the estimation of group averages and
group-level effects, compromising between the overly
noisy within-group estimate and the oversimplified regres-
sion estimate that ignores group indicators [26].
To better estimate the effect of demographic groups with

small populations (for example, psychology majors), we

FIG. 2 (color online). Generally, women participate more
often than men. The course is about 70% male.

FIG. 1 (color online). Student participation is bimodal, with
40% of students completing seven or more tasks, and �30% of
students completing less than three.
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use a Bayesian approach with Gibbs sampling that aver-
ages over the uncertainty in all the parameters of the model
[27]. We choose to work with simulations (rather than
simply point estimates of parameters) because we can
directly capture inferential uncertainty and propagate it
into predictions. Whenever we represent inferences for a
parameter using a point estimate and standard error, we are
performing a data reduction. If the estimate is normally
distributed, this summary discards no information because
the normal distribution is completely defined by its mean
and variance. But in other cases it can be useful to represent
the uncertainty in the parameter estimation by a set of
random simulations that represent possible values of the
parameter vector (with more likely values being more
likely to appear in the simulation). By simulation, then,
we mean summarizing inferences by random numbers
rather than by point estimates and standard errors [26].

We divide the students’ GPA into five groups. Gender is
coded as a binary. In phase 1, students’ majors are col-
lapsed into five categories: computer science, engineering,
physics, science, and other. In phase 2, the RAWR system
permitted the collection of more detailed information
about majors, and major information is left uncollapsed
across the 55 majors who take introductory physics at the
Institute.

We use a linear regression,

yi � Nð�þ �GPA½i� þ �major½i� þ �xi; �
2
yÞ; (1)

where yi represents the score of the ith student, � is the
average expected score on the instrument, �GPA½i� and

�major½i� are group-level indicators specifying different

GPA groups and majors, � is a constant, and xi is an
individual-level indicator of gender. Thus, if a male
(xi ¼ 1) student with a GPA of 3.561 (�i ¼ A) who is a
physics major (�physics) takes the test, his score would be

y ¼ �þ �A þ �physics þ � � 1: (2)

We find that the average expected scores (�) are
3:0� 0:5 in phase 1 and 3:5� 0:5 in phase 2. That phase 2
has a larger expected score could be because of selection
effects in phase 2, where we oversampled better students,
or it could stem from the format shift from paper-based to
computer-based testing. This is discussed in more detail in
Sec. IVA.

In both phases, we find a slight effect of cumulative
GPA. Students who score better have higher GPAs
(Table IV). We find a substantial gender effect. Men score
better by 1:9� 0:3 questions in phase 1 and by 0:9� 0:2
questions in phase 2. In phase 1, we do not find an effect of
major (collapsed into five options). In phase 2, where the
data specify majors in more detail, we find that most
majors (of the 55 enrolled in physics) score about the
same as each other. Only five majors score significantly
better or worse than the average across all majors
(Table V).

C. Lasting effects of prior physics instruction

We divide the students who are currently enrolled in
Mechanics into four different groups based on their an-
swers to the question ‘‘What is the highest level physics
course for which you have credit?’’
As Mechanics is the first course in the sequence, the vast

majority of students respond about the physics classes they
took in high school. (A trivial minority never took physics
before, or took a different university course, such as
algebra-based physics; both of those populations are ex-
cluded from the analysis in this section.) The four possible
high school physics classes are ‘‘regular physics,’’
advanced placement (AP) physics B, AP physics C, and
international baccalaureate (IB) physics. Data are self-
reported, and we neither ask students for their scores on
the AP or IB exams (where applicable) nor assess the
quality or content of their prior physics classes.
We use a linear model where

yi � nð�group½i� þ �xi; �
2
yÞ; (3)

where yi, �, and xi have the same meanings as in the
previous question, and group½i� is one of the four previous
physics classes. Here we have collapsed across major and
GPA to look primarily at the effects of gender and prior

TABLE IV. Effects of GPA on N3L score.

Phase 1 Phase 2

GPA mean� SD mean� SD

0–2 �0:2� 0:6 �1:3� 0:6
2–2.5 0� 0:4 0� 0:5
2.5–3 �0:2� 0:4 �0:2� 0:5
3–3.5 �0:1� 0:4 0:2� 0:5
3.5–4 0:5� 0:4 0:8� 0:5

TABLE VI. Effects of prior physics classes.

Phase 1 Phase 2

Course mean� SD mean� SD

Regular physics 2:8� 0:4 3:3� 0:5
Physics AP B 2:6� 0:5 3:5� 0:4
Physics AP C 4� 0:7 3:5� 0:5
IB physics 2� 1:2 3:4� 0:4

TABLE V. Effect of major in phase 2. For brevity, we list only
the majors with nonzero coefficients.

mean� SD

Computer Science �0:3� 0:2
Aerospace Engineering 0:7� 0:3
Physics 0:8� 0:3
Mechanical Engineering Technology �0:5� 0:4
Biomedical Engineering �0:4� 0:3
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physics preparation. Again, we use WINBUGS to run 3
Markov chains in parallel with 4000 iterations. Data are
summarized in Table VI.

Phase 1 data suggest that there is little, if any, effect of
prior physics classes on students’ understanding of N3L. It
is possible that the selection effects in phase 2 have washed
out any effect of prior physics classes in this analysis.

V. PHASE 1: NEWTON’S THIRD LAW TASKS

Multiple-choice tasks were devised to probe student
understanding of Newton’s third law. In phase 1, two tasks
of four questions each were developed. In order to align
with the instruction of the different classes, tasks were
couched in appropriately different contexts. Sample tasks
are shown in Figs. 3 and 4.

In Mechanics, the task involved a car pulling a trailer
(see Fig. 3). Students are asked to compare the forces
acting on the car and trailer as the car speeds up, travels
at constant speed up a hill, travels at constant speed on a
level road, and slows down. Students choose one of the
given answers (A–E). The answer choices for each ques-
tion were the same and the students could select each
answer as many times as they wanted. These questions
were chosen to cover the space of commonly occurring
student models in pulling scenarios [10].

For E&M, the task was rewritten to involve electric
charges (see Fig. 4). Students compared the forces acting
on the rod and ball as the ball starts to move, speeds up, and
slows down as it swings away from the rod and finally
when it comes to rest. This question is not completely
isomorphic to the Mechanics formulation, and so we do
not directly compare the Mechanics and E&M responses.
Rather, we look for changes in the response over the course
of each quarter, and similarities in how this behavior
corresponds to the topic of instruction.
Between-student data are collected by having different

groups of students take the tasks (e.g., Figs. 3 or 4) each
week. Groups corresponded to different sections of the
same course; group sizes ranged from 13 to 42 students.
We group all incorrect student answers together and plot
the percentage of students getting the correct response in
Figs. 5 and 6. Error bars in Figs. 5 and 6 are 1�, calculated
from a binomial distribution.

VI. RESULTS

A. Instruction’s positive impact

Figure 5 shows the response curve for students in the
Mechanics course. Shown are average responses for the
three nontrivial questions asked in Fig. 3; a question in-
volving the car traveling at constant speed shows a ceiling
effect where almost all students answer correctly indepen-
dent of week, instructor, or any other variable. Although

FIG. 3. Phase 1 prompt and responses for N3L task for
Mechanics. The students were asked to consider situations where
the car was speeding up, constant speed up a hill, constant speed
on a level road, and slowing down. In each case, the force that
the car exerts on the trailer is equal and opposite to the force that
the trailer exerts on the car.

FIG. 4. Phase 1 prompt and response forN3L task forE&M.The
students were asked to compare the forces on the rod and ball for
the three scenarios where the ball started tomove, sped up, slowed
down, and at rest at the apex of the swing. As in the mechanics
example, the forces in each case are equal and opposite.
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80% of students have taken physics prior to the introduc-
tory course at the Institute, response during the first few
weeks of the course, before explicit instruction of forces or
Newton’s laws, hovers around the chance line of 20%.
Instruction on forces begins in week 4, and student per-
formance begins to rise, culminating with a maximum
performance in week 6. Week 6 is also the last week of
instruction on forces, and includes the examination. After
instruction, the response rapidly drops, with two of the
questions ending just above the chance line at the end of
the quarter.

B. Instruction’s negative impact

Figure 6 shows the response curve for all students in the
E&M course, a question involving the ball at rest having
been omitted due to the presence of a ceiling effect. At the
Institute, E&M is typically taken in the fall quarter. This
means that because of the summer break, it has been
approximately 5 months since these students last saw

instruction on forces and Newton’s laws. (The second
quarter deals with rotational motion, waves, and miscella-
neous physics topics.) Nevertheless, students enter with an
initial response of 66%, significantly higher than they
exited Mechanics. We have three potential explanations.
Most likely is a winnowing effect, with the weakest stu-
dents leaving the sequence before reaching E&M. Failure
rates (defined as obtaining a D, F, or withdrawing)
in Mechanics average around 25%, and an additional
� 17% exit between Mechanics and E&M. Therefore,
students entering E&M are the top 62% of the students
in Mechanics, and a higher performance is expected. Less
likely is the possibility that instruction in the second quar-
ter has bolstered student understanding. It is also possible
that the two scenarios do not appear similar to students.
The most significant feature of Fig. 6 is the pronounced

dip in week 4 to 41%. This drop, 25% points below the
average, cannot be explained by instructor or section vari-
ance, and so we assert that course topic is the most likely

FIG. 5 (color online). Response curve for Mechanics. Before instruction response could be chance. There is a broad peak during
instruction with a maximum during week 6 which is the end of the section on forces.

FIG. 6 (color online). Response curve for E&M. The response is mostly flat around the average of 66% with a measurable dip during
week 4. This dip corresponds to the period of instruction in electric potential.
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cause. In E&M, the first three weeks are spent on electric
fields, Coulomb’s law, and Gauss’s law. Week 4 shifts the
topic from vector-based concepts to the scalar topics of
electric potential and voltage. We speculate, therefore, that
instruction on the scalar electric concepts interferes with
response to a vector-based (Coulombic force) question. In
week 5 instruction shifts to current, resistance, and circuits.
While this is also scalar based, and we note that the week 5
performance is still below average, we suspect that because
instruction is not explicitly involving electric charges the
interference effect is lessened. These topics are amenable
to further study, and the richness of data in interviews
would be appropriate here.

VII. SIGNIFICANCE

It has been established [5] that student understanding is
dynamic and time dependent. In this study we have shown
that this dynamism continues far beyond the immediate
period surrounding instruction. Inasmuch as long-term
studies of student understanding exist (for examples, see
the study of E&M among juniors by Pollock and Chasteen
[28] or the study of non-STEM (Science, Technology,
Engineering, and Mathematics) majors upon graduation
by Barrantes et al. [29]), they support the long-term be-
havior of our data. While long-term studies are important,
they obscure the dynamism present on the scale of weeks.

Student response to questions on vector-based topics,
like Newton’s third law, are sensitive to any physics
instruction they are receiving at the time. ‘‘Dissonant’’
instruction, e.g., topics that emphasize a scalar con-
cept, suppresses student scores. It is fortunate that this

interference disappears when instruction returns to more
‘‘consistent,’’ i.e., vector-based, topics.
The impact of current instruction on previously learned

knowledge has been loosely termed ‘‘interference’’ [4]. It
underscores the complexity of student learning, as stu-
dents struggle to identify, activate, and use appropriate
knowledge in response to a prompt. Even strong students,
who have already progressed through two previous quar-
ters of physics and show a high initial score, struggle to
reconcile a strange prompt with their current frame
of mind. The implications for testing and assessment
may be profound, calling into question the accuracy of
any single evaluation. Phenomenologically, we note the
existence of the interference; interview or in-class video-
based observational data of students may help pinpoint
more specific causes. Subsequent research will look at
interference effects in strong and weak students, main-
stream, and remedial sections, and in more explicit vector
tasks.
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