

How Does Visual Attention Differ Between Experts and **Novices on Physics Problems?** Adrian Madsen¹, Adam Larson¹, Elizabeth Gire², Lester Loschky¹ & N. Sanjay Rebello¹, ¹Kansas State University, ²University of Memphis

OBJECTIVE

Investigate how the allocation of visual attention differs with varying levels of physics experience on physics problems where the critical information needed to answer the problem is contained in a diagram.

METHOD

Participants: 9 PhD students in physics with teaching experience and 13 introductory psychology students who have taken a physics course.

Physics Problems: Participants answered 10 multiple-choice conceptual physics questions where the information needed to answer the question was contained in a diagram.

Instructions and calibration of eye tracker

Answer 10 multiple-choice conceptual questions while eye movements recorded

Explain reasoning for answers to questions while watching playback of eye movements

BACKGROUND: Expert Novice Differences In Visual Attention

• Experts' visual attention is primarily driven by knowledge and they spend more time than novices looking at relevant information in figures. [1-3]

• Novices' visual attention is driven by noticeable features of environment and they spend more time looking at perceptually salient areas of figures and pictures. [4]

- Expert chess players [3] and artists [2] spend more time looking at relevant areas of medium.

- Novices were found to spend more time looking at salient features of a weather map. [4]

Research Question: How does expertise affect the fixation duration in perceptually salient versus thematically relevant areas in a figure?

ANALYSIS & RESULTS 1

Perceptually salient and thematically relevant areas of interest (AOI's) defined by three independent raters. One-way ANOVA used to compare percentage of time spent in each type of AOI. **Significance determined at alpha=.05 level. Green boxes indicate significant differences.

atically Relevant	Perceptually Salient
:: 46.6% (± 10.7)	Correct: 19.2% (± 8.2)
t: 25.8% (± 11.5)*	Incorrect: 29.0% (± 6.9*

atically Relevant	Perceptually Salient
: 26.0% (± 3.9)	Correct: 46.4% (± 17.1)
rect: 14.3% (±11.0)*	Incorrect: 52.9% (± 19.3)

BACKGROUND: Saliency Maps

• Influences on Attention - Bottom-up: fast, automatic mechanism that biases observer toward attending to stimuli based on obviousness. Perceptual. - Top-down: slower mechanism which controls attention willfully and is task-dependent. Cognitive. • Saliency Map: 2D map that encodes saliency of objects in visual environment. [6]

- Orientation, intensity and color

Itti's model used to create saliency map [6].

1. T. van Gog, H. Jarodzka, K. Scheiter, P. Gerjets & F. Paas, Computers in Human Behavior 25, 785–791 (2009). 2. J. R. Antes & A. F. Kristjanson, Perceptual and Motor Skills 73, 893-894 (1991). 3. N. Charness, E. M. Reingold, M. Pomplun & D.M. Stampe, Memory and Cognition 29, 1146-1152 (2001). 4. R.K. Lowe, Learning and Instruction 12, 157-176 (2003). 5. J. Harel, A Saliency Implementation in MATLAB: http://www.klab.caltech.edu/~harel/share/gbvs.php 6. Itti, L., & Koch, C. (2000). A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research, 40 (10-12), 1489-1506.

- Attention first goes to most salient location, then is inhibited and is automatically shifted to next most salient location. **Research Question:** How does level of experience in physics influence deployment of top-down and bottom-up processes when viewing conceptual physics problems?

Saliency map of problem used in study. [5]

REFERENCES

