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This study investigates how students understand and apply the area under the curve 

concept and the integral - area relation in solving introductory physics problems. We 

interviewed 20 students in the first semester and 15 students from the same cohort in the 

second semester of a calculus-based physics course sequence on several problems 

involving the area under the curve concept. We found that only a few students could 

recognize that the concept of area under the curve was applicable in physics problems. 

Even when students could invoke the area under the curve concept, they did not necessarily 

understand the relationship between the process of accumulation and the area under a 

curve, so they failed to apply it to novel situations. We also found that when presented with 

several graphs, students had difficulty in selecting the graph such that the area under the 

graph corresponded to a given integral, although all of them could state that “the integral 

equaled the area under the curve.” The findings in this study are consistent with those in 

previous mathematics education research and research in physics education on students’ 

use of the area under the curve. 

I. INTRODUCTION 

Many physics problems involve using an integral to calculate physical quantities from other 

non-constant quantities. In most of these problems, the algebraic expressions of the functions to be 

integrated are provided or can be determined from the problem statements, so the integrals can be 

computed algebraically. There are also a few problems in which the integrals must be evaluated 

graphically using areas under the curves of the integrands. Many research studies have investigated 

students’ problem solving with algebraic computation of integrals
1-3

. However, there have not been 

many studies on how students use graphical methods to evaluate definite integrals in physics 

problems. 

In this study, we investigated students’ understanding and application of the concept of area 

under the curve to evaluate definite integrals in several physics problems. These problems were 

designed to investigate whether students were able to recognize and use the concept, whether they 

understood what quantity the area represented, and whether they could match a definite integral 

with an area under a curve.  

In the next section, we review some of the studies in mathematics and physics education 

research on students’ understanding of integration and the relationship between a definite integral 

and an area under a curve. In Section III, we describe the methodology of our research study. We 

present our findings in Section IV and discuss how these findings support and extend other studies 

in mathematics and physics education research in Section V. The limitations of our study and our 

future work built on this study will be discussed in Section VI. 

II. LITERATURE REVIEW 

There have been several studies in mathematics education research on students’ understanding 

of integration and the relationship between the definite integral and the area under a curve. Orton
4
 

investigated students’ understanding of integration, the errors students made when solving 

integration problems, and the relationship between a definite integral and area under a curve. He 
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interviewed 110 British students aged 16 to 22 on several limits and integration tasks. Many of 

these tasks involved finding areas under curves using the Riemann sum method and calculating the 

limit of that Riemann sum. Some other tasks asked students to prove basic properties of integration 

(such as the integral of a sum was the sum of integrals) using area under the curve. Orton found 

that the majority of students did not perceive the integral as the limit of a Riemann sum and talked 

about such limit as an approximation, not as an exact answer, although they had no difficulty 

evaluating a given Riemann sum. Similar results were found by Artigue
5
, who also investigated 

students’ understanding of differentiation and integration. Artigue found that although most of the 

students could perform routine procedures for finding the area under a curve, rarely could they 

explain their procedures. Some students did not even realize why they were doing it. 

Ferrini-Mundy and Graham
6
 interviewed a group of six students in calculus to reveal students’ 

understanding of basic concepts of calculus (e.g. function, limit, continuity, derivative, and 

integral) and the interrelationships among those concepts. They investigated in detail the 

performance of one student in the interviews. They found that this student, like many others in the 

study, “interpreted the integral as a signal to ‘do something’.” This student perceived the definite 

integral as “the area between the graph of the function and the x-axis.” while thinking of the 

Riemann sum of the areas of the small rectangles under the curve as the “proof” for that fact. 

There were also studies that investigated students’ ability to provide an abstract definition of 

the definite integral and the concept image students had for it. A concept image is a cognitive 

structure in an individual’s mind that is associated with a specific mathematical concept.
7
  

Bezuidenhout and Olivier
8
 analyzed students’ written tests and interviews to reveal students’ 

concept image of the definite integral. Specifically, they looked at students’ process conception 

and object conception, which were two components that formed parts of the concept image that an 

individual had of the concept. They found that students inappropriately applied the limit law that 

“the limit of a sum is the sum of the limits” to the Riemann sum, which revealed their 

inappropriate process conception of the limit concept. Students also associated the definite integral 

with the area between the curve and the horizontal axis, which they perceived as being always 

positive. Therefore, they took the absolute values of the results of the integrals to obtain positive 

results. This erroneous “area-conception” of integral was an example of the unsatisfactory 

conceptions which might be due to insufficient abstraction of the concept images of the integral. In 

our study, we also revealed students’ misconception about the integral - area relation when they 

attempted to select the graph from among several graphs that corresponded to a pre-determined 

integral representing a physical quantity. 

Rasslan and Tall
9
 also investigated the definition and images of the definite integral held by 

high school students in the UK. They found that “the majority do not write meaningfully about the 

definition of definite integral, and have difficulty interpreting problems calculating areas and 

definite integrals in wider contexts.” They suggested strategies for teaching the definite integral 

concept. The strategy was to introduce the concept as “cases [that] extended the students’ previous 

experience” and let the students experience it in use through a variety of examples covering a wide 

contextual range. Also on the topic of students’ definition and image of the definite integral is the 

work of Grundmeier et al.
10

 They surveyed 52 students leaving a calculus class that covered the 

theory and techniques of integration. The survey was designed to explore students’ ability to define 

the definite integral in words and symbols, to interpret and represent an integral graphically, to 

evaluate integrals and to recognize the use of integrals in the real world. They found that students’ 

knowledge of the definition of the integral did not affect their ability to perform routine calculation 

on the integrals. They also found that students could “perform integration as a procedure with 

limited understanding that they are finding the area under the curve and that this area is being 

found as a limit of estimations for that area.” 
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Mahir
11

 investigated the conceptual and procedural knowledge of 62 students who had 

successfully completed a one-year calculus course. These students were asked to solve five 

calculus problems relating the concepts of integral, integral – area relation, integral as a sum of 

areas, and the fundamental theorem of calculus. The first two problems (1 and 2) could be solved 

using integral formulas and techniques, so these problems could evaluate students’ procedural 

knowledge. The next two problems (3 and 4) could be solved by using either the integral – area 

relation or symbolic integral techniques. The last problem (problem 5) was more complicated and 

required students to combine many concepts, so it served to evaluate students’ conceptual 

knowledge. Mahir found that the students in his study did not have satisfactory conceptual 

understanding of the concepts being tested. He also concluded that the students following the 

conceptual approach also performed satisfactorily on procedural calculations and had a higher 

success rate than the students following the procedural approach. He suggested that concept-based 

instruction might help to improve students’ conceptual understanding in calculus. This suggestion 

was supported by the study of Chapell and Killpatrick
12

 who found that “students exposed to the 

concept-based learning environment scored significantly higher than the students in procedural-

based environment on assessment that measures conceptual understanding as well as procedural 

skills.” 

All of the research mentioned above indicates that students who had taken calculus courses did 

not have satisfactory conceptual understanding of the integral concept and the integral - area 

relation although they might be very fluent in performing symbolic integral techniques or in 

calculating the area under a curve. This lack in conceptual understanding of the integral and the 

integral - area relation will become a stumbling block when students attempt to apply the area 

under the curve concept in real world problems, such as physics problems. Building on these 

previous studies in mathematics education, our study focuses on exploring the difficulties that 

students who have successfully completed integral calculus courses, encounter when applying the 

area under the curve concept in physics problems. Specifically, we investigate whether students in 

calculus-based physics courses could recognize the application of the area under the curve in 

physics problems, whether they understood what quantity the area under the curve represented, and 

whether they could match a definite integral with the corresponding area under the curve when 

provided with several curves. 

Thompson and Silverman
13

 pointed out that for students to perceive the area under a curve as 

representing a quantity other than area (e.g. velocity, work), it was important that students 

considered the quantity being accumulated as a sum of infinitesimal elements that were formed 

multiplicatively. Thompson and Silverman proposed the accumulation model in which integration 

meant accumulating the bits that were made of two multiplicative quantities. This model 

emphasized the two “layers” of integration: the multiplicative layer when the bits were formed and 

the accumulating layer when the bits were accumulated.  

Sealey
14

 also emphasized the importance of understanding the structure of the integral with 

the ability to apply the area under the curve in physics problems. She investigated students’ 

problem solving on “real world problems” involving integration in a calculus class. The “real 

world problems” in this study were physics problems in which physical quantities were calculated 

using integration. She found that students might be proficient in dealing with area under a curve 

but they might not be able to relate such an area to the structure of a Riemann sum. She concluded 

that the area under the curve method could be a powerful tool to evaluate a definite integral only 

when students understood the structure of the definite integral. 

In our study, we found evidence of students’ failure in interpreting the meaning of the area 

under the curve when they did not perceive it as a Riemann sum and did not understand the 

structure of the Riemann sum. The hints that we provided to help students to recognize the use of 
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the area under the curve and to interpret its meaning in physics problems were based on the 

structure of the Riemann sum which was consistent with the suggestion of Thompson and 

Silverman and Sealey. 

There have been a few studies in physics education research that focus on how students apply 

the area under a curve method in evaluating integrals in physics problems. McDermott et al.
15

 

investigated students’ difficulties in connecting graphs and physics in the context of kinematics. 

They identified two categories of difficulty students had with graphs. First, students had 

difficulties in connecting graphs to physics concepts, including discriminating between the slope 

and height of a graph, interpreting changes in height and changes in slope, relating one type of 

graph to another, matching narrative information with relevant features of a graph, and interpreting 

the area under a graph. Second, students had difficulties in connecting graphs to the real world, 

including representing continuous motion by a continuous line, separating the shape of a graph 

from the path of the motion, representing a negative velocity on a “ v  vs. t ” graph, representing 

constant acceleration on a “ a  vs. t ” graph, and distinguishing among different types of motion 

graphs. 

In a problem involving finding displacement from a graph of “ v  vs. t ”, students had to find 

the area under the curve by counting the number of squares bounded by the curve and the 0v =  

axis and then multiplied it by the displacement that each square represented. They found that most 

of the difficulties students had were directly related to their “inability to visualize the motion 

depicted by the velocity versus time graph.”
15

 (p. 506) Students did not know which square they 

should include in the “area under the curve,” so they counted all of the squares from under the 

curve all the way to the bottom line of the grid where the horizontal axis was labeled. That led to 

students’ difficulties in distinguishing positive and negative areas, as well as associating them with 

displacement in the positive and negative direction respectively. 

More recently, Pollock et al.
16

 investigated students’ understanding of the physics and 

mathematics of process variables in P-V diagrams in thermodynamics. On a question asking 

students to compare the work done by a gas taking two different paths on the P-V diagram, they 

found that successful students were those who recognized that work was PdV∫  and that this 

integral equaled the area under the path. 

These studies investigated students’ application of the area under the curve in physics problems 

but were limited on the topics (i.e. the quantities that were calculated using the area under the 

curve). There have been no studies in physics education on how students related an integral and an 

area under the curve when there were several graphs provided. In our study, we investigate 

students’ application of the area under the curve in physics problems covering a broader range of 

topics (e.g. work-energy, electric field, resistance, capacitance, electric current) and complexity, 

and also investigate how students relate an integral and an area under the curve when several 

graphs are provided. Specifically, we examine the following research questions: 

RQ1: How did students in our study recognize the use of area under the curve in physics 

problems? 

RQ2: How did students in our study understand what quantity was being accumulated when 

calculating the area under a curve? 

RQ3: How did students in our study understand the relationship between a definite integral and 

the area under a curve? 

In the next section, we will describe the format of our interviews as well as the rationale of the 

interview problems. 
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III. METHODOLOGY 

A. The interviews 

In the spring semester of 2009, 20 students were randomly selected from a pool of 102 

volunteers enrolled in a first-semester calculus-based physics course (which we call Engineering 

Physics 1 or EP1) to participate in our study in mechanics. Most of these students were freshmen 

or sophomore engineering majors. Among these 20 students, there were 13 males and 7 females.  

Each student was interviewed four times during the semester (interviews 1 through 4). The 

main reason that we chose this methodology was to gain deep insights into how students solve the 

interview problems, what difficulties they encounter, and what hints and scaffolding might help 

them overcome these difficulties. We call these interviews teaching/learning interviews.
17

 This 

type of interview is different from the more commonly used clinical interview after Piaget.
18, 19

 

While the focus of clinical interviews is to investigate the state of student knowledge – what 

people think, the main purpose of teaching/learning interviews is to investigate the process of 

knowledge construction –  how people think and how they respond to prompts and hints from the 

interviewer. Since the purpose of our research was to investigate how students applied the area 

under the curve concept when solving physics problems, the teaching/learning interview was an 

appropriate methodology for our study. 

Each interview occurred within two weeks after students had completed an exam in their 

physics course. The topics covered in the interviews were those that had been tested in the most 

recent exams. The topics were one-dimensional kinematics in interview 1, work and energy 

without friction in interview 2, work and energy with friction in interview 3, and rotational energy 

with friction in interview 4. In interview 1, students were asked to solve two problems: one from 

their recent exam and an isomorphic problem in which part of the information was given as a 

graph. In each of the interviews 2, 3, and 4, students solved three problems: an original problem, a 

graphical problem, and an algebraic problem. The original problem was selected from the most 

recent exam and was intended to prepare students with the physics concepts and principles used in 

the interview while the graphical and algebraic problems were modified versions of the original 

problem in which part of the information was provided as a graph or an algebraic expression of a 

function. In this paper, we focus our discussion on the graphical problem from interviews 2-4 

because those problems involve calculating an integral using the area under the curve method. 

In a related study, we investigated the interaction effect between graphical and algebraic 

representations.
20

 For this purpose, approximately half of the participants in each interview were 

given the graphical problem before the algebraic problem (the G-A sequence) while the other half 

were given the algebraic problem before the graphical problem (the A-G sequence). We found that 

in both cases, better performance was observed in the problem that came later in the sequence, 

regardless of the representation – graphical or algebraic. This result indicated that students’ 

performance on the second problem in the sequence was positively affected by the first problem. 

In this paper, we disregard this effect by only investigating those students who did the graphical 

problem first, i.e. followed the G-A sequence. The numbers of students following the G-A 

sequence in each of the interviews are presented in Table 1. 

Interview Number of students 

2 11 

3 9 

4 9 

Table 1. Number of students following the 

G-A sequence in each interview. 
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In the fall semester of 2009, 15 students from among the spring 2009 interviewees, who were 

enrolled in a second-semester calculus-based physics course (Engineering Physics 2 or EP2) at that 

time, agreed to continue participating in our study on electricity and magnetism. Among these 15 

students, there were 9 males and 6 females. Each student went through another sequence of four 

interviews (interviews 5 through 8) during the semester. The format of these interviews was 

similar to that of the spring interviews, except that there were four to five problems in each 

interview. These problems included one problem with constant quantities and other problems with 

non-constant quantities whose information was provided as graphs or algebraic expressions of 

functions. Each graph problem in the fall interviews contained three to four graphs of related 

quantities. All students were given the problems in the same order in all interviews. The topics of 

each interview were charge distribution and electric field in interview 5, resistance and capacitance 

in interview 6, current density and Ampere’s law in interview 7, and RLC circuit in interview 8. 

We will only discuss the graphical problems from interviews 5, 6, and 7 because these problems 

involved matching a definite integral with an area under a curve. 

All of the interviews in both semesters were conducted by the first author of this paper. 

Students were asked to think aloud as they solved the problems in our interviews. Verbal hints 

were given by the interviewer when students made a mistake or were on the wrong approach to the 

correct answer.  

B. Rationale of the interview problems 

Our interview problems were designed to investigate students’ application of the area under the 

curve concept in calculating a physical quantity other than area. In the spring 2009 interviews, our 

problems were designed to answer the first two research questions: 

RQ1: How did students in our study recognize the use of area under the curve in physics 

problems? 

RQ2: How did students in our study understand what quantity was being accumulated when 

calculating the area under a curve? 

The gun problem (interview 2) and the barrel problem (interview 3) were simple problems 

involving the area under the curve. Prior to our interviews, students had learned in the lecture that 

the work done by a force equaled the area under the curve of force versus displacement. In the gun 

and the barrel problems, students were provided with graphs of force versus linear displacement 

and they had to calculate the work done by a non-constant force, so they only needed to recall the 

knowledge learned in the lecture. An interview episode in which the student was able to calculate 

the work from the graph of force in interview 2 is presented in Appendix A1. For students who 

were not able to recall this knowledge, the interviewer would provide hints to help students 

recognize the use of the area under the curve in the problems. The set of hints that was used 

frequently to help students in the gun and the barrel problems included questions that led students 

to think about the multiplicative structure of the formula for the work and the area. Work was the 

product of force and displacement, and unit of work was the product of units of force and 

displacement. Then students were asked to think about how such a product could be obtained from 

the graph (i.e. multiplying the quantities on the vertical and horizontal axes, which essentially 

yielded the area). A typical interview episode in which the student was able to calculate the work 

after this set of hints was provided is presented in Appendix A2. Another episode in which the 

student was unable to correctly respond to these hints and needed detailed guidance from the 

interviewer to calculate the work in interview 2 is presented in Appendix A3. 

The sphere problem (interview 4) was more complicated. This problem provided a graph of 

force versus angular displacement instead of linear displacement, so finding the area under the 
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curve meant accumulating the product of force and angle, which did not yield the total work. 

Students had to convert angle to distance along the circular track by multiplying the angle by the 

radius of the track. Overall, this meant that students had to multiply the area under the curve by the 

radius of the track. So, this problem required an understanding of what quantity was being 

accumulated when computing the area under the curve. Therefore, it could help us determine 

whether students understood the relationship between work and area under the curve or just 

applied it as a rule. Once the student had recognized the use of the area under the curve in finding 

the work, the interviewer let the student calculate the area under the curve. If the student claimed 

that the area they obtained was the value of work, the interviewer would provide hints to help them 

recognize that it was in fact not the work yet and that they needed to multiply it with the radius of 

the track to calculate the correct value of work. The hints that were provided to the students asked 

them to focus on the unit of the area they calculated and compare this with the units of work. They 

were also provided hints that asked them to think about and the relation between the angle and 

circumference of a full circle. Interview episodes of students who spontaneously recognized, 

recognized after hints, and recognized after detailed guidance, that the area was not yet the value 

of work are presented in Appendices A4, A5, and A6, respectively. 

As students proceeded through our interviews, they had become familiar with the use of area 

under the curve in physics problems, although as our results show they did not completely 

understand how to apply this knowledge in unfamiliar situations. Another important limitation of 

the interview problems chosen in spring 2009 was that in all of these problems, students had one 

integral and were provided with one graph (i.e. the graph of the integrand versus the variable of 

integration), therefore most students then knew that the integral equaled the area under the curve. 

If there had been more than one graph, we would have been able to investigate whether students 

knew under which curve to find the area. In order to choose from several graphs the graph 

corresponding to a pre-determined integral, students had to understand the relation between 

integral and the area under the curve. So our problems in the fall 2009 interviews were designed to 

help us answer the third research question: 

RQ3: How frequently did students in our study understand the relationship between a definite 

integral and area under a curve? 

In each of these problems, students had to calculate a physical quantity (e.g. electric field, 

resistance, electric current) by evaluating a definite integral. Explicit expression of the integrand 

was neither given nor derived. Instead, students were provided with several graphs of related 

quantities. Students had to choose the graph on which the area under the curve equaled the integral 

at hand. This could help us determine whether students understood how a definite integral was 

related to area under a curve. 

C. Data analysis 

All interviews were video- and audio-taped and verbatim transcripts were created. Students’ 

worksheets as well as interviewer’s field notes were also collected. We first examined the field 

notes to identify interesting points in each interview and then referred to the student’s worksheet 

and transcript for detail on what students wrote and said. Both authors of this paper studied the 

transcripts of the interviews and looked for the answers to the following questions:  

- Did the student spontaneously recognize the use of the area under the curve in solving the 

problems? 

- If not, did the student recognize it after a few hints or after detailed guidance from the 

interviewer? 
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- What hints were provided by the interviewer to help students recognize the use of the area 

under the curve? 

We established an inter-rater reliability of 89% between two independent raters. 

In the next section, we will present our findings from the interviews and discuss how these 

findings help us answer our research questions. We will use pseudonyms S1 to S20 to identify the 

students. We used the same pseudonym to refer to the same individual in both semesters, i.e. 

student S13 in the spring 2009 interviews was the same student S13 in the fall 2009 interviews. 

IV. RESULTS 

A. Calculating work from a graph of force versus position 

The graphical problems of interviews 2, 3, and 4 involved calculating the work done by a non-

constant force from a graph of force versus linear or angular position. Students learned from the 

lecture that the work done by a force equaled the area under the curve of force versus position. 

However, there was no homework or exam problem in which this knowledge was required, so 

students did not have a chance to practice finding work from a graph of force prior to our 

interviews. 

We found that in interviews 2 and 3, most of the students attempted to use the equation of 

work done by a constant force W F d= ⋅  or that of work done by the spring force 21

2
W kx=  to 

calculate work. Upon being asked to think of another strategy to find work, only a few students 

were able to recognize that they could find the area under the curve of force. Other students only 

recognized that the work equaled the area after hints or detailed guidance from the interviewer. In 

interview 4, students had become familiar with the task, so most of them spontaneously stated that 

work equaled area under the curve. However, the graph provided in interview 4 was a graph of 

force versus angular displacement instead of linear displacement, so the area under the curve did 

not yield work. To find the work done by frictional force in this problem, students had to find the 

area under the curve and multiply it by the radius of the circular track. This procedure was 

equivalent to calculating the integral ( )
/ 2

0

R F d

π

θ θ∫  or ( )
/ 2

0

R

F ds

π

θ∫ , where ds  was an infinitesimal 

segment of length along the circular track. 

We classified students’ performance into three levels:  

(i) getting the correct answer spontaneously, i.e. the student got the correct answer 

without any hints from the interviewer. 

(ii) getting the correct answer after hints were provided by the interviewer, i.e. the student 

was able to use the area under the curve appropriately by following the hints provided 

by the interviewer. 

(iii) getting the correct answer after detailed guidance from the interviewer, i.e. the student 

failed to follow the hints provided by the interviewer and needed to be told explicitly 

how to use the area under the curve. 

The major difference between a student who got the correct answer after hints were provided 

and after detailed guidance was that the former student was able to respond correctly to the hints 

and obtained the correct answer by him/herself, while the latter student was unable to respond 

correctly to the hints and needed to be told explicitly about how to arrive at the correct answer. 
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Examples of students who got the correct answer spontaneously, after a few hints, and after 

detailed guidance in interview 2 are presented in Appendices A1, A2, and A3 respectively. The 

problem in interview 3 was similar to that in interview 2, so we do not present examples for 

interview 3. Examples of students who recognize the need for the radius factor in the sphere 

problem (interview 4) spontaneously, after a few hints, and after detailed guidance are also 

presented in Appendices A4, A5, and A6 respectively. 

 

Figure 1. The gun problem (interview 2) 

The gun problem (Figure 1): This problem involved finding the work done by a spring force. 

There were two possible strategies for calculating the work done by the spring force in this 

problem. First, one could find the area under the curve of force vs. displacement graph.  Second, 

one could find the spring constant k . Because of the linear dependence of spring force and 

displacement in this problem, the spring constant k  equaled the magnitude of the slope of the line. 

Then the work done by the spring force could be found from the equation 21

2
W kx= , where x  was 

the maximum spring compression. 

Only one out of 11 students spontaneously stated that work equaled area under the curve of the 

force versus displacement graph and used the first strategy to calculate work. The other 10 students 

followed the second strategy and also obtained the correct value of work. When these students 

were asked to think of another strategy to find the work done by the spring force, six students 

could recognize that work equaled area under the curve of force after hints. The other four students 

stated that the area might have a physical meaning but were not able to recall what the meaning 

was until being explicitly told by the interviewer. 
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Figure 2. The barrel problem (interview 3) 

The barrel problem (Figure 2): This problem involved finding the work done by the resistance 

force of a liquid. This work might be found by either finding the area under the curve of force or 

treating the liquid as a spring whose spring constant was the slope of the line. Only three out of 

nine students spontaneously stated that work equaled area under the line. Three other students 

invoked the equation for work done by friction force on a horizontal floor W F d mgdµ= ⋅ =  in 

which the coefficient of friction µ  was the slope of the curve. Another student stated that the slope 

of the curve was the value of work. The remaining two students attempted to use the equation 

W F d= ⋅  where F  was the value of force at the maximum point on the graph. Of the six students 

who did not spontaneously calculate area under the curve, three recognized that work could be 

calculated using area under the curve after hints, while the other three were unable to recognize it 

until being told explicitly by the interviewer. 

 

Figure 3. The sphere problem (interview 4) 

The sphere problem (Figure 3): This problem involved finding the work done by the rolling 

friction force on a circular track. This could be done by finding the area under the curve and 
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multiplying this area by the radius of the track. Only one out of nine students spontaneously set up 

the correct calculation and got the correct value of the work. Five other students spontaneously 

stated that the area under the curve was the value of work. Of these five students, upon being told 

that the area itself was not the value of work, only two students recognized the need for the radius 

factor while the other three did not know what was missing and needed detailed guidance from the 

interviewer on both recognizing the use of area under the curve and the radius factor. 

Table 2 below summarizes the number of students (out of the total) who obtained the correct 

value of work using area under the curve without hints, with hints, and with detailed guidance. 

Problem 
Correct without 

hints 

Correct with 

hints 

Correct with 

detailed guidance 

Gun 

1/11 

S16 

6/11 

S1, S2, S4, S8, 

S19, S14 

4/11 

S3, S7, S11, S12 

Barrel 
3/9 

S10, S15, S16 

3/9 

S2, S6, S12 

3/9 

S3, S11, S13 

Sphere 

1/9 

S9 

2/9 

S6, S10 

6/9 

S5, S17, S18, S13, 

S15, S20 

Table 2. Students who obtained work using the area under the curve 

without hints, with hints, and with detailed guidance. 

 From Table 2, we see that only a few students (S9, S10, S15, S16) could spontaneously 

recognize the use of area under the curve in calculating work when the graph of force versus 

displacement was provided. Student S16 worked on the algebraic problem before the graphical 

problem in interview 4 so he was not included in the analysis of the sphere problem. In this 

problem, students S10 and S15 spontaneously stated that the work done by the rolling friction 

force was the area under the curve of force versus angle. One of them (S10) could recognize the 

need for the radius factor after being told that the area itself was not the value of work. The other 

student (S15) only obtained the correct value of work after detailed guidance from the interviewer. 

Student S9 was the only one who could calculate the correct value of work in the sphere problem 

without hints. However, he completed the graph problem after the algebraic problem in interviews 

2 and 3, so he was not included in the analysis of the gun and the barrel problems. Therefore, we 

did not know whether or not he was able to recognize the use of area under the curve in those 

problems. 

We answer our first two research questions as follows. 

RQ1: How did students in our study recognize the use of area under the curve in physics 

problems?  

The majority of students in our interviews did not spontaneously recognize the use of area 

under the curve in calculating work from the graph of force. There were two possible explanations: 

(i) students were not familiar with the method; and (ii) students held strong preferences for the 

algebraic method. The fact that more students were able to recognize that work equaled area under 

the curve as they progressed through the interviews suggests that students gained familiarity with 

the method. Some students, while talking with the interviewer after the interviews, stated that they 

had never seen a problem using area under the curve in their homework or on exams. On the other 

hand, students also expressed an inclination to an algebraic approach even when a graph was 

provided. They attempted to use pre-derived equations for work and just used the graph to collect 

data on the values of the spring constant or the coefficient of friction. Some students explicitly told 
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the interviewer that they hated problems with graphs and preferred working with equations. These 

facts supported the second explanation. 

RQ2: How did students in our study understand what quantity was being accumulated when 

calculating the area under a curve?  

In the gun and barrel problems, the area under the curve itself was the value of work. So when 

a student recognized that work equaled area under the curve, we did not know whether he 

understood how work was accumulated when calculating the area or if he had just applied what he 

was taught in the lecture. There were four students in interview 2 who stated that the area had 

some meaning but they were unable to explain the meaning. In addition, there were also three 

students in interview 3 who stated that the slope of the line was the coefficient of friction. These 

were evidence that these students did not understand what quantity the slope and the area 

represented. 

In the sphere problem, finding the area meant accumulating the product of force and angle, 

which was not work. Six out of nine students spontaneously stated that work equaled the area 

under the curve, but only one of them spontaneously recognized the need for the radius factor. This 

was further evidence that although students could invoke the statement that “work equals the area 

under the curve of force versus displacement,” they might not understand what quantity was being 

accumulated when calculating such an area. Therefore, they failed to apply that knowledge in 

novel situations. 

B. Matching a definite integral with an area under a curve 

 The graphical problems of interviews 5, 6, and 7 involved evaluating definite integrals by 

calculating the areas under the curves. All 15 students (S1 to S15) participating in these interviews 

solved the algebraic problems prior to the graphical problems. Each of the graphical problems 

provided three or four graphs describing the relation between the related quantities in the problem. 

Students had to select among these graphs the one in which the area under the curve was the value 

of the integral they encountered when solving the problem. 

 We found that most of the students preferred computing the integral algebraically to 

evaluating it graphically. Students attempted to find the expressions of the functions from the 

given graphs to plug into the integrals and computed them algebraically. Students considered 

evaluating the integrals using area under the curve only when the integral was too complicated to 

be computed algebraically or when students were unable to find the explicit expressions of the 

functions. About half of the students in each interview were able to select the appropriate graph to 

find area (i.e. the graph of the integrand), while others needed hints on this task. The hint provided 

to the students in this situation was to draw a graph of an arbitrary function ( )f x  and have 

students label the axes of the graph such that the area under the curve from a  to b  equaled the 

integral ( )
b

a

f x dx∫ . This exercise, which directed students’ attention to the relation between the 

integrand and the function being plotted, helped most of the students recognize the correct graph to 

find the area. Interview episodes in which students were able to select the correct graph 

spontaneously and after hints are presented in Appendices A7 and A8, respectively. 
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Figure 4. The arch problem (interview 5) 

 The arch problem (Figure 4): Students were given the graphs of “ ( )λ θ  vs. θ ”, “ ( )sinλ θ θ  

vs. θ ”, and “ ( )cosλ θ θ  vs. θ ”, and had to evaluate the integral ( )
/ 2

/ 2

cos d

π

π

λ θ θ θ
−

∫ . The value of 

this integral equaled the area under the curve of “ ( )cosλ θ θ  vs. θ ” (i.e. the second graph in the 

problem statement) from / 2π−  to / 2π . One out of 15 students attempted to find the expression 

of ( )λ θ  to compute the integral algebraically. Four other students did not know what to do with 

the graphs. Upon being provided hints on the relation between a definite integral and an area under 

a curve, two of them were able to choose the correct graph to find area while the other two 

students needed further hints to recognize the correct graph. Out of the 10 students who 

spontaneously recognized the relation between integral and area under a curve, four students were 

able to choose the correct graph. The remaining six students initially chose an incorrect graph and 

needed hints to recognize the correct one. The errors these students made included: finding area 

under the curve of “ ( )λ θ  vs. θ ” (S11, S14, and S15) because they were “integrating ( )λ θ ”, 

multiplying the area under the curve of “ ( )λ θ  vs. θ ” by cosθ  (S6), choosing the graph of 

“ ( )cosλ θ θ  vs. θ ” because “its area was easy to calculate” (S12), and relating the area with the 

anti-derivative of the integrand (S13). The last error will be discussed as a misconception in 

subsection C. 
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Figure 5. The conductor problem (interview 6) 

 The conductor problem (Figure 5): Students were given the graphs of “ ( )xρ  vs. x ”, “ ( )A x  

vs. x ”, “ ( ) ( )x A xρ ⋅  vs. x ”, and “
( )
( )
x

A x

ρ
 vs. x ”, and had to evaluate the integral 

( )
( )

2

0

x
R dx

A x

ρ
= ∫  

where ( )xρ  and ( )A x  were the resistivity and cross-sectional area of the conductor at position 

x . The value of this integral equaled the area under the curve of “
( )
( )
x

A x

ρ
 vs. x ” (i.e. the fourth 

graph in the problem statement) from 0.0 m to 2.0 m. Three out of 15 students were able to choose 

the correct graph. Among the other 12 students, eight attempted to find the expression of ( )xρ  in 

order to compute the integral algebraically. The expression of the area function ( )A x  had been 

derived in the algebraic problem which came before this problem. The integral obtained was too 

complicated to be computed algebraically, so these students considered evaluating the integral 

using area under the curve and were able to choose the correct graph. The remaining four students 

needed hints to recognize the correct graph to find area. The errors these students made could be 

attributed to students’ misconceptions about basic properties of integration and the relation 

between an integral and the area under a curve. These misconceptions will be discussed in detail in 

subsection C. 
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Figure 6. The current problem (interview 7) 

 The current problem (Figure 6): The equation for the current in this problem was 

( )
2

0

2I j r rdrπ= ∫ . Students were given the graphs of “ ( )j r  vs. r ”, “ ( )rj r  vs. r ”, “ ( )2
r j r  vs. r ”, 

and “
( )j r

r
 vs. r ”. The value of the integral in the current equation equaled the area under the 

curve of ( )rj r  vs. r  (i.e. the second graph in the problem statement) from 0 cm to 2 cm. Nine out 

of 15 students were able to choose the correct graph. Four other students chose the “ ( )j r  vs. r ” 

graph for the reason that the current density ( )j r  was being integrated. The remaining two 

students chose the “
( )j r

r
 vs. r ” graph because its area was straightforward to calculate. 

 In summary, almost all of the students indicated knowledge that an integral equaled the area 

under a curve. However, when provided with several graphs, students had difficulties identifying 

the graph under which the area was the value of a certain integral. There were four common errors 

that students made in selecting the graph: 

(i) relating only one part of the integrand with the function being plotted (e.g. equating 

( )
/ 2

/ 2

cos d

π

π

λ θ θ θ
−

∫  with the area under the curve of “ ( )λ θ  vs. θ ”, or ( )
2

0

j r rdr∫  with area 

under the curve of “ ( )j r  vs. r ”); 
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(ii) relating the area with the integrand (e.g. equating the area under the curve of “ ( )xρ  vs. 

x ” with the value of the function ( )xρ  in the integral); 

(iii) identifying the graph to find the area based on the simplicity of the area calculation (e.g. 

choosing a graph because the area calculation was straightforward); 

(iv) applying incorrect properties of integration (e.g. equating the integral of a quotient with 

the quotient of integrals). 

In the next subsection, we will discuss students’ misconceptions about integration and the area 

under a curve. 

C. Students’ misconceptions about the integral and the area under a curve 

 Our interviews also revealed some students’ misconceptions about basic properties of 

integrals and the relationship between the integrals and the area under a curve. These 

misconceptions were the integral equals the area under the curve of the anti-derivative of the 

integrand, integral of a product or quotient equals sum or quotient of integrals, and integrand 

equals area under the curve. We will discuss each of these misconceptions below. 

 Area under a curve equals the anti-derivative of the integrand: In the arch problem (interview 

5), the integral was ( )
/ 2

/ 2

cos d

π

π

λ θ θ θ
−

∫  which equaled the area under the curve of “ ( )cosλ θ θ  vs. 

θ ” from / 2π−  to / 2π . Student S13 chose the graph of “ ( )sinλ θ θ  vs. θ ”] because she 

integrated cosθ  before finding the area. The transcript of this interview episode is presented in 

Appendix A9. 

 The area under a curve equals the integrand: In the conductor problem (interview 6), the 

integral was 
( )
( )

2

0

x
dx

A x

ρ
∫  which equaled the area under the curve of “

( )
( )
x

A x

ρ
 vs. x ” from 0.0 m to 

2.0 m. Student S8 calculated the areas under the curves of “ ( )xρ  vs. x ” and “ ( )A x  vs. x ” and 

plugged those areas into ( )xρ  and ( )A x  in the integral. Similarly, in the current problem 

(interview 7), student S3 calculated the area under the curve of “ ( )j r  vs. r ” and plugged that area 

into ( )j r  in the integral ( )
2

0

j r rdr∫ . These errors suggested that these students perceived the area 

under a curve as the value of the integrand rather than the value of the integral. The transcript of 

the interview episode in which this type of misconception occurred is presented in Appendix A10. 

Integral of a product or quotient equaled a sum or quotient of integrals: In the conductor 

problem (interview 6), student S1 found the explicit expression of ( )xρ  from the “ ( )xρ  vs. x ” 

graph and calculated the integral using the equation 
( )
( )

( )
( )

2 2 2

0 0 0

x dx
dx x dx

A x A x

ρ
ρ= +∫ ∫ ∫ . Students S6 

and S8 attempted to use the equation 
( )
( )

( )

( )

2

2

0

2

0

0

x dx
x

dx
A x

A x dx

ρ
ρ

=
∫

∫
∫

  and calculated the quotient of the 
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areas under the curves of “ ( )xρ  vs. x ” and “ ( )A x  vs. x ”. The transcript of the interview 

episode in which this type of misconception occurred is presented in Appendix A11. 

In summary, we found evidence that students might not completely understand the concept 

that “the integral equals the area under the curve” although they might be able to invoke it during 

problem solving. We also found evidence that some students held misconceptions about basic 

properties of integrals. 

We answer our last research question – RQ3: How did students understand the relationship 

between a definite integral and area under a curve?  

Almost all of the students indicated knowledge of “the integral equaled the area under the 

curve,” but only half of them (four students in interview 5, eight in interview 6, and nine in 

interview 7) were able to select the graph corresponding to a pre-determined integral when several 

graphs were present. The errors other students made – choosing a graph based on part of the 

integrand or on the simplicity of the area calculation – indicated that these students did not 

completely understand the relationship between a definite integral and area under a curve. 

V. DISCUSSION 

In this study, we found that the majority of the students did not spontaneously invoke the area 

under the curve concept during physics problem solving. This might be attributed to students’ 

unfamiliarity with the graphical methods as well as their strong inclination toward algebraic 

methods in solving physics problems. Even when students invoked the area under the curve 

concept in a physics problem, there was evidence that they might not understand what physical 

quantity the area represented. We also found that when provided with several graphs, many 

students were unable to choose the graph on which the area under the curve equaled a pre-

determined integral, even though they could state that the integral equaled the area under the curve. 

We will now discuss how our findings are consistent with other studies in mathematics and 

physics education research on students’ use of the area under the curve concept. 

Students’ difficulties with the area under the curve concept in the physics context of our study 

are similar to those previously found in mathematics context. We found that most of the students 

used area under the curve to find work from a graph of force versus displacement but they might 

not understand why the work was equal to the area, so they failed to recognize that the area under 

the curve in the sphere problem was not yet the value of work. This is similar to what Artigue 

concluded in his study
5
: most students could perform routine procedures of finding area under the 

curve but rarely could they explain why these procedures were necessary. 

Thompson and Silverman
13

 suggested that for students to perceive the area under the curve as 

representing a quantity other than area (in our case it was work), students must be able to see the 

integration process as an accumulation of the incremental bits that were formed multiplicatively. 

The hints we provided to help students recognize the use of the area under the curve concept in our 

interviews aimed at this goal. We asked students questions that directed their attention to the fact 

that the total work was the accumulation of the product of force and distance over small 

increments, which was essentially the area under the curve on the graph of force versus linear 

displacement.  

Sealey
14

 concluded that the area under the curve method could be a powerful tool to evaluate a 

definite integral only when students understood the structure of the definite integral. Our study 

showed the extent to which students struggled with choosing an area that equaled a definite 

integral when they did not view the integral as having two components: the integrand and the 
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infinitesimal term dx  or dr . About half of the students in our interviews chose the incorrect graph 

because their choice was based on the wrong clues (i.e. based on part of the integrand, the anti-

derivative of the integrand, or the ease of finding the area). The hints that asked students to label a 

graph of an arbitrary function ( )f x  such that the area under the curve equaled the integral 

( )
b

a

f x dx∫  directed students’ attention to the two components of an integral and helped them 

recognize that the integrand was the clue for choosing the correct graph. 

McDermott et al.
15

 studied how students used area under the curve in kinematics. Our study 

investigated students’ use of area under the curve in many other topics of introductory physics. We 

did not have any problems involving negative area as in McDermott et al.’s study, but we had 

problems with more than one graph from which we could investigate how students related a 

definite integral with an area under a curve. 

VI. LIMITATIONS AND FUTURE WORK 

The research methodology used in this study was the individual interview. This method had an 

advantage in that it allowed us to gain insight into how individual students interacted with the 

concept of an integral as area under the curve. It also allowed us to interview the same students 

several times during two semesters, and therefore, we could track the development of the students 

through both of the courses. In spite of the advantages afforded by individual interviews, the 

method limited the number of students participating in the study, and hence, limited the 

generalizability of the results.  

Our interview problems involved several physics quantities that could be calculated using area 

under the curve. However, there was no problem involving negative areas or areas that had the 

lower bound other than the ( ) 0f x =  axis (i.e. the x-axis). By “area under the curve” we usually 

mean the area bounded by the curve and the ( ) 0f x =  axis. There are problems in which the “area 

under the curve” is bounded by the curve and the ( ) 2f x = −  line for instance. Investigating 

whether students know that “integral equals area under the curve, but above what?” will be an 

interesting study following the study presented in this paper. 

Based on our interview findings, we plan to develop tutorial materials to help students 

understand the “integral equals area under the curve” relationship and implement them for all of 

the students in both EP1 and EP2 courses (usually around 200+ students each) in future semesters 

when the courses are offered to test the effects of those materials in helping students learn to use 

the area under the curve method in physics problem solving. 

ACKNOWLEDGMENT 

We gratefully acknowledge the contributions of Dr. Elizabeth Gire, currently at University of 

Memphis, for her participations in the discussions on the design of the interview questions for fall 

2009. This work is supported in part by U.S. National Science Foundation grant 0816207. 

Opinions expressed in this paper are those of the authors and not necessarily those of the 

Foundation. 

 

 



 19

APPENDIX A 

A1. An interview episode in which a student spontaneously recognized the use of the area under 

the curve in interview 2 

 

Interviewer:  So what are you trying to calculate? 

Student:  Spring constant based on the graph … which isn't necessary actually because 

W F d= ⋅  … because I can just have the work on the ball so I'll just need to 

integrate the graph. Since it's a triangle I would say 
1

100
2

b h W J⋅ = =  is work done 

by the spring. 

 

In this episode, the student recognized that he could find the work done by the spring force by 

saying that he could “integrate the graph” and his calculation indicates that he meant finding the 

area under the curve of force versus distance. 

 

A2. An interview episode in which a student recognized the use of the area under the curve after 

a few hints in interview 2 
 

Interviewer:  So you found x and F to find k to use in potential energy.  But can you think of a 

way to find potential energy without knowing k and x? 

Student:  …I'm not sure, that's the only equation I know for it. 

Interviewer:  What is the equation for work? 

Student:  W F d= ⋅  

Interviewer:  How are force and distance given on the graph? 

Student:  They are plotted on the graph. 

Interviewer:  Force is plotted on the vertical axis and distance on the horizontal axis. 

Student:  Yeah. 

Interviewer:  So work is the product of these two quantities, which means it is the product of the 

vertical and horizontal values. What do you get when you multiply the horizontal 

and vertical dimensions of a graph? 

Student:  I’ll get the area of the graph. 

Interviewer:  Right, so you know how to find work now. 

Student:  Yeah … area under the curve. 

 

In this episode, the student started out knowing only one method for calculating the work: 

using the formula 21

2
W kx= . Being prompted that the work was the product of force and distance, 

which were the two dimensions of the given graph, the student was able to recognize that such a 

product was the area of the graph, and therefore, the work was the area bounded by the curve of 

force. 

 

A3. An interview episode in which a student recognized the use of the area under the curve after 

detailed guidance in interview 2 
 

Interviewer:  You found k by finding F and x but there is another way without knowing x and 

knowing F.  Can you think of any other method? 

Student:  I guess the graph tells you. 

Interviewer:  Ok, how will you do that? 

Student:  Well, at x=.2 then potential energy is 1000. 
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Interviewer:  Not potential energy.  The only thing that tells you is that the force is 1000N at 

x=.2. Potential energy is equal to the work done by the spring. 

Student:  Which is F d⋅ . 

Interviewer:  Yes, how do you get the force and distance? 

Student:  This graph tells you the force at different distance… I don’t know. 

Interviewer:  Force is the vertical axis on the graph, and distance is the horizontal axis. So how 

can you find F d⋅  on the graph? 

Student:  I have no idea. 

Interviewer:  Okay, multiplying the vertical and the horizontal axes of the graphs, you’ll get its 

area. So in this case work is the area under the curve. 

Student:  Oh yes. 

 

In this episode, the interviewer provided similar hints as in the episode presented in appendix 

A2. However, the student still could not recognize that the work equaled the area under the curve 

until being told explicitly by the interviewer. 

 

A4. An interview episode in which a student spontaneously recognized the need for the unit 

conversion in interview 4 

 

The following episode started after the student had calculated the area under the curve and got 273 

area units. 

 

Student:  This is my area under the curve, which is work done by the force … Oh wait, the 

unit is not right. 

Interviewer: What is the unit of that number? 

Student:  It’s Newton times degree now, but I need Joule. 

Interviewer:  So what should you do then? 

Student:  I think I can change it. [drew a unit conversion table and converted the unit 

correctly and got 4.76 J] 

Interviewer:  Yeah, that’s right. 

 

In this episode, the student first claimed that the area under the curve was the work done by 

the force. But then he spontaneously recognized that the unit was not right, and was able to convert 

the unit by himself. 

 

A5. An interview episode in which a student recognized the need for the radius factor after hints 

in interview 4 
 

The following episode started after the student had calculated the area under the curve and got 

270 area units. 

 

Interviewer:  What is the unit of that number? 

Student:  Umm … Newton time degree. 

Interviewer:  How do you know? 

Student:  … because you're finding the area multiplying this [horizontal axis] times this 

[vertical axis] which is Newton time degree. 

Interviewer:  What do you want to calculate? 

Student:  Work. 

Interviewer:  What is the unit of work? 

Student:  It’s Joule, isn’t it? 
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Interviewer:  Yes, but what is a Joule? 

Student:  Joule is … Newton … per … meter squared. 

Interviewer:  What is the equation for the work done by a force? 

Student:  Work is force time distance. 

Interviewer:  Right, so what is the unit of work then? 

Student:  Newton time meter. 

Interviewer:  But here you have Newton times degree and you have to convert that to Newton 

times meter. 

Student:  How do I find degrees from meter? I've never even heard of going from degree to 

meters… 

Interviewer:  How many degrees are there in a full circle? 

Student:  360. 

Interviewer:  How many meters are there in a full circle?  I mean the circumference. 

Student:  2 Rπ  ... So I have … 
2 meters

360 degrees

Rπ
 

Interviewer:  Right, so now you can convert the unit. 

Student:  [did the unit conversion and got the correct value of work] 

 

In this episode, the student did not spontaneously recognize the need for a unit conversion 

until being prompted that the unit of the area under the curve was not the unit of work. The student  

then did not know how she could convert the unit because she “never even heard of going from 

degrees to meters.” She was, however, able to respond correctly to the hints provided by the 

interviewer and was able to set up the unit conversion factor. 

 

A6. An interview episode in which a student recognized the need for the radius factor after 

detailed guidance in interview 4 

 

The following episode started after the student had calculated the area under the curve and got 

267.5 area units. 

 

Interviewer:  That is right, but what is the unit? 

Student:  Newton … per meter? 

Interviewer:  You found the area by multiplying the x-values by the y-values so what is the unit 

of the area? 

Student:  … per degree? 

Interviewer: The y-value is in Newton and the x-value is in degree and you multiply them so 

what is the unit? 

Student:  Newton time degree. 

Interviewer:  Yes. Newton time degree. 

Student:  Oh and that equals the work, right? 

Interviewer:  What is the unit of work? 

Student:  Umm … Newton … per meter? 

Interviewer:  Newton time meter. So how can you convert the unit? 

Student:  I don't know because it's not in radians and if it was in radians then I would 

multiply it by 2π or something like that. 

Interviewer:  Okay, let’s consider the full circle how many degrees? 

Student:  360. 

Interviewer:  How many meters are there in a full circle?  I mean the circumference. 

Student:  2π  or something …  
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Interviewer:  2 Rπ . So 360 degrees are corresponding to 2 Rπ  meters, so what is the unit 

conversion factor now? 

Student:  Umm … I’m confused. Why we are talking about a full circle but we just have a 

part of a circle? 

Interviewer:  That is just an example for you to see how a degree is related to a meter. 

Student:  1mR =  so the circumference is 2π  meters, not one meter. 

Interviewer:  What I mean is that you can make a fraction which equals 1 and has the unit of 

meter per degree. 

Student:  Umm … I don’t know how I can get 1 from these. 

Interviewer:  Okay, 360 degrees are corresponding to 2 Rπ  meters, so the fraction is 

2 meters

360 degrees

Rπ
. Now you can do the unit conversion. 

Student:  I don’t know how to convert unit though. 

Interviewer:  Alright, the unit conversion is ( )
2 meters

267.5 N×degrees
360 degrees

Rπ
 and you’ll get a 

number in Newton time meter, which is Joule. And that’s the value of work. 

Student:  Okay. 

 

The student in this episode claimed that the area under the curve was the value of work. He 

was not able to state the correct unit of it upon being asked. He seemed to be completely lost when 

the interviewer attempted to provide hints on unit conversion, and needed to be told explicitly how 

to convert the unit. 

 

A7. An interview episode in which a student spontaneously selected the correct graph to find the 

area in interview 5 
 

The following episode started after the student had set up the correct integral for the electric 

field ( )
/ 2

0 / 2

1
cos

4
E d

R

π

π

λ θ θ θ
πε

−

= ∫ . 

Student:  I have this integral and I have the graphs so I have to use the area under the curve 

then. 

Interviewer:  Which curve do you use? 

Student:  This one. [points at the graph of “ ( )cosλ θ θ  vs. θ ”] 

Interviewer:  How do you know? 

Student:  Since I’m integrating ( )cosλ θ θ . 

Interviewer:  Yes, right. 

 

In this episode, the student was able to recognize that he needed to use the graph of 

“ ( )cosλ θ θ  vs. θ ” and his reasoning indicates that he chose the curve based on the integrand. 

 

A8. An interview episode in which a student selected the correct graph to find the area after 

hints in interview 5 
 

The following episode started after the student had set up the correct integral for the electric 

field ( )
/ 2

0 / 2

1
cos

4
E d

R

π

π

λ θ θ θ
πε

−

= ∫ . 
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Interviewer:  How can you evaluate this integral? 

Student:  I can find the area under the curve. 

Interviewer:  Which curve do you use? 

Student:  I’m integrating λ and this graph [points at the graph of “ ( )λ θ  vs. θ ”] tells me 

about λ .  

Interviewer:  Other graphs also have λ . 

Student:  So … I don’t know which one then. 

Interviewer:  Okay, now if I have a curve [draw an arbitrary curve] and I tell you that the area 

under this curve from x a=  to x b=  equals the integral ( )
b

a

f x dx∫ , can you label 

the axes of the graph? 

Student:  This is ( )f x  [labels the vertical axis] and this is x  [labels the horizontal axis]. 

Interviewer:  Right, but how did you know? 

Student:  Because the integral equals the area under the curve. 

Interviewer:  So do you know which curve to find the area now? 

Student:  Well … here I have ( )λ θ  instead of ( )f x  … so I want to say this graph [points at 

the graph of “ ( )λ θ  vs. θ ”] but you told me it’s not right. 

Interviewer:  What is the integrand in this integral? 

Student:  Oh … I have to integrate cosθ  too. So I would say this graph. [points at the graph 

of “ ( )cosλ θ θ  vs. θ ”] 

Interviewer:  You get it now. 

 

The student in this episode first chose the graph of “ ( )λ θ  vs. θ ” because “it tells me about 

λ .” With the hints provided by the interviewer, he was able to recognize that he needed to use the 

graph of “ ( )cosλ θ θ  vs. θ ”. 

 

A9. An interview episode in which a student selected the graph to find the area based on the 

anti-derivative of the integrand in interview 5 
 

The following episode started after the student had set up the correct integral for the electric 

field ( )
/ 2

0 / 2

1
cos

4
E d

R

π

π

λ θ θ θ
πε

−

= ∫ . 

Interviewer:  Okay, so now you have graphs … 

Student:  Yeah, I understand that I have to use these graphs, I just don’t know how. 

Interviewer:  And you have your integral. So what is the relation between an integral and a 

graph? 

Student:  It’s the area underneath the curve. 

Interviewer:  Uh huh, area under the curve. So which graph do you use to find the area? 

Student:  I’m hoping this one. [points at the graph of “ ( )λ θ  vs. θ ”] 

Interviewer:  Yes, you hope. But you should have a reason. 

Student:  No … It’s this one. [points at the graph of “ ( )sinλ θ θ  vs. θ ”] 
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Interviewer:  How do you know you should use that graph? 

Student:  Um, because if I take the integral of cosine it’s going to be sine so I need the area 

under this. 

This student was able to recognize that the integral equals the “area underneath the curve” 

when provided hints on the relation between integral and graph. However, she was not sure which 

area was corresponding to the integral. After picking a graph with the “hope” that it would be the 

correct one, she was more thoughtful in her second attempt. Her explanation that the integral of 

cosine was sine indicated that she chose the graph based on the result of integrating the cosine in 

the integrand. This evidence suggested that she did not understand the relation “the integral equals 

the area underneath the curve” although she could invoke it when solving the problem. 

 

A10. An interview episode in which a student found the area under the curve and used it as the 

integrand to find the area in interview 6 
 

The following episode started after the student had set up the integral for the resistance 

( )
( )

2

0

x
R dx

A x

ρ
= ∫

 

Student:  I need to find … do the area under this curve … [points at the graph of “ ( )xρ  vs. 

x ”] … and this curve … [points at the graph of “ ( )A x  vs. x ”] 

Interviewer: How do you know? 

Student:  ‘Cause I need ( )xρ  and ( )A x  in the integral. 

Interviewer:  So what do you plan to do? 

Student: I need the areas to plug in the integral. 

Interviewer:  No, the area itself is already the integral.

 

Student:  Oh … okay, so I will use this graph then. [points at the graph of “
( )
( )
x

A x

ρ
 vs. x ”] 

Interviewer:  Let’s do that. 

In this episode, the student attempted to find the areas under the curves of “ ( )xρ  vs. x ” and 

“ ( )A x  vs. x ” to plug in the integral. After being told that the area equaled the whole integral, not 

just the integrand, he was able to choose the correct graph. 

 

 

A11. An interview episode in which a student selected the graph to find the area based on 

incorrect property of the integral in interview 6 
 

The following episode started after the student had set up the integral for the resistance 

( )
( )

2

0

x
R dx

A x

ρ
= ∫

 

Student:  Now I have to find the area underneath the curve. 
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Interviewer:  Which curve do you use? 

Student:  You actually have two functions here, so I’ll need two areas. 

Interviewer:  What are the areas? 

Student:  Area under this one and this one. [points at the graph of “ ( )xρ  vs. x ” and “ ( )A x  

vs. x ”] 

Interviewer:  What will you do with those areas? 

Student:  Since it’s a division here so I have to divide the areas. 

Interviewer:  You actually can’t do that because you have 
( )
( )

2

0

x
dx

A x

ρ
∫

 

and what you did was to 

find 

( )

( )

2

0

2

0

x dx

A x dx

ρ∫

∫
. They are not equal. 

Student:  Umm … so then I would say this graph. [points at the graph of “
( )
( )
x

A x

ρ
 vs. x ”] 

Interviewer:  Yeah, that’s right. 

The student in this episode noticed that he had two functions so he needed two areas. He also 

attempted to divide the areas, and recognized the correct graph after being told that the integral of 

a quotient was not the quotient of integrals. These indicate that he was relating the area under the 

curve with the individual function, not the whole integral, and was holding a misconception about 

the property of the integral. 
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