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This study investigates the common difficulties that students in introductory physics 

experience when solving problems involving integration in the context of electricity. We 

conducted teaching/learning interviews with 15 students in a second-semester calculus-based 

introductory physics course on several problems involving integration. We found that although 

most of the students could recognize the need for an integral in solving the problem, they failed 

to set up the desired integral. We provide evidence that this failure can be attributed to students’ 

inability to understand the infinitesimal term in the integral and/or failure to understand the 

notion of accumulation of an infinitesimal physical quantity. This work supports and extends 

previous research on students’ difficulties with integration in physics. 

I. INTRODUCTION 

Students in calculus-based physics courses are often expected to have sufficient mathematical 

knowledge and skills to be applied to physics problems. Yet research in physics problem solving 

indicates that students’ transfer from mathematics to physics does not happen as often and easily as we 

expect. This is not because students do not have the necessary mathematical resources but because 

they cannot appropriately activate those resources in physics contexts.
1, 2

 

Integration is a very powerful mathematical tool widely used in physics, especially in electricity 

and magnetism (E&M). Many problems in E&M require extensive application of integration. In this 

study, we take a close look at students solving electricity problems involving integration to detect the 

difficulties students encounter when applying the integral concept in physics problem solving. 

While the study focuses on students’ difficulties with integration, we do not describe how 

consistent students were with the same incorrect reasoning. The reason we decided not to pursue this 

kind of longitudinal analysis was because in the teaching/learning interviews, we provided students 

with hints to enable them to eventually solve each problem. Thus, their reasoning on the subsequent 

problems might have been affected. Therefore, measurements of the consistency of students’ 

difficulties across interviews would not be valid. 

In the next section, we provide an overview of the related literature on students’ difficulties with 

integration in calculus and in E&M. Section III describes the context and methodology of the study. 

The findings from the interviews are presented in Section IV. A discussion on how our findings 

support and extend other works on related topics is presented in Section V. The limitation of the study 

as well as future work will be discussed in Section VI. 

II. RELATED LITERATURE 

Research on students’ application of calculus in physics suggested that students might not 

conceptually understand mathematical processes although they could easily carry out the calculations.
3
 

Among the earliest research on students’ understanding of integration was the work of Orton.
4
 In that 

study, 110 British students aged 16 – 22 were interviewed on several tasks involving the concepts of 

limit and integration. Orton found that students’ errors with these basic concepts of calculus could be 

classified as structural (fundamental or conceptual), executive (operational and procedural), or 

arbitrary. He also found that the majority of students did not view the integral as the limit of a 

Riemann sum and talked about such limit as an approximation, not as an exact answer, although they 

had no difficulty evaluating a given Riemann sum. 
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Yeatts and Hundhausen
5
, based on their teaching experience, described students’ difficulties when 

transferring from calculus to physics in three categories. The first category - “notation and symbolism” 

- included difficulties that arose from students’ rote memory of, and hence, reliance on the symbols 

used in each context. Mathematics and physics might use the same notation or symbol to mean 

different things, thus causing difficulties to students. The second category - “the distraction factor” - 

occurred when the surface features of the problem hindered the underlying mathematical process. The 

third category was “compartmentalization of knowledge,” which occurred when students stored 

knowledge of different disciplines in different “cabinets” and activated knowledge in each “cabinet” 

only in the corresponding discipline. 

Grundmeier et al.
6
 surveyed 52 students who had completed a calculus class that covered the 

theory and techniques of integration to explore students’ ability to give a definition of the definite 

integral in words and in symbols, to interpret and represent an integral graphically, to evaluate 

integrals and to recognize the use of integrals in the real world. They found that students’ knowledge 

of the definition of the integral did not affect their ability to perform routine calculation on the 

integrals. They also found that students could “perform integration as a procedure with limited 

understanding that they are finding the area under the curve and that this area is being found as a limit 

of estimation for that area.” 

Thompson and Silverman
7
 pointed out that for students to perceive the area under a curve as 

representing a quantity other than area (e.g. velocity, work), it was important that students considered 

the quantity being accumulated as a sum of infinitesimal bits that were formed multiplicatively. They 

also proposed the accumulation model which considered integration as an accumulation of the bits that 

were made of two multiplicative quantities. This model emphasized the two “layers” of integration: 

the multiplicative layer when the bits were formed and the accumulative layer when the bits were 

accumulated. In our study, we found evidence of students’ failure in interpreting the meaning of the 

area under the curve when they did not understand the structure of the Riemann sum. The hints we 

provided to the students to help them set up the correct integrals were also built upon the structure of 

the Riemann sum. 

Cui et al.
2
 investigated students’ retention and transfer from calculus to physics. They found that 

students had significant difficulties distinguishing variables and constants in an integral as well as 

determining the limits of an integral. They also found that four out of seven interviewees recognized 

the use of integral in a physics problem by recalling the strategy they had learned from in-class 

examples while the other three students had a rough idea of an integral as a sum of an infinite number 

of small elements. 

Meredith and Marrongelle
8
 investigated the resources that students used to cue integration in 

electrostatics problems. They used the notion of Sherin’s symbolic forms
9
 to describe these resources. 

A symbolic form is a cognitive mathematical primitive which allows students to “associate a simple 

conceptual schema with an arrangement of symbols in an equation.”
9
 (p. 482) Meredith and 

Marrongelle identified three symbolic forms that students used to cue integration, namely, the recall 

cue, the dependence cue, and the parts-of-a-whole cue. Recall is not a symbolic form because it does 

not have a mathematical structure, but it is commonly used in cueing integration. The recall cue is 

identified when students recall a previously learned strategy when solving a problem. The dependence 

symbolic form is described as “a whole depends on the quantity associated with an individual 

symbol.” The dependence cue is identified when students decide to integrate because there is a 

quantity that depends on another quantity. The parts-of-a-whole symbolic form is described as 

“amounts of generic substance, associated with terms that contribute to a whole.” Interpreting an 

integral as an accumulation of infinitesimally small elements indicates the use of parts-of-a-whole cue. 

Meredith and Marrongelle also found that the dependence cue was more commonly used by students 

than the parts-of-a-whole cue, although “the use of the dependence symbolic form led to inaccuracies 
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if the quantity being integrated was not a rate or a density.”
8
 (p. 577) They suggested that the parts-of-

a-whole symbolic form was a more powerful and flexible resource to cue integration. They also 

proposed instructional strategies to promote students’ use of the parts-of-a-whole recourse to cue 

integration in physics problems. 

Most recently, Wallace and Chasteen
10

 found that part of students’ difficulties with Ampère’s law 

was due to students not viewing the integral in Ampère’s law as representing a sum, which aligned 

with the work of Manogue et al.
11

 on the same topic. 

In our point of view, the application of integration in a physics problem can be divided into four 

steps: 

- Step 1: recognize the need for an integral 

- Step 2: set up the expression for the infinitesimal quantity 

- Step 3: accumulate the infinitesimal quantities 

- Step 4: compute the integral 

The work by Meredith and Marrongelle
8
 investigated the first step. Although they did mention 

that students might misapply the symbolic forms in setting up an integral, they did not investigate this 

misapplication in detail. The work of Cui et al.
2
 mentioned some of the difficulties students had when 

applying integral in physics (i.e. step 2) but did not discuss them in detail. Our current study adds the 

missing piece to the picture. We investigate students’ difficulties in all four steps of the process, 

especially those in steps 2 and 3. Specifically, we examine the research question: What are the 

common difficulties that students encounter when solving problems in electricity involving 

integration? 

III. METHODOLOGY 

In the spring semester of 2009, 20 students at a large Midwestern U.S. university were randomly 

selected from a pool of 102 volunteers enrolled in a first-semester calculus-based physics course 

(which we call Engineering Physics 1 or EP1) to participate in our study on problem solving in 

mechanics. In that study, each of these 20 students was interviewed four times during the spring 2009 

semester (interviews 1 through 4). In the fall semester of 2009, 15 of these 20 students, who were 

enrolled in the second-semester calculus-based physics course (Engineering Physics 2 or EP2) at that 

time, agreed to continue with our study in electricity and magnetism. Among these 15 students, there 

were 9 males and 6 females. By the time of the interviews, all of these students had completed two 

semesters and were taking the third semester of college calculus. 

Each of these 15 students went through another sequence of four interviews (interviews 5 through 

8) during the fall 2009 semester. Each interview occurred within two weeks after the students had 

completed an exam in their EP2 course. The materials covered in the interviews were the materials 

that had been tested in the most recent exams. All of the interviews were conducted by the first author 

of this paper. The interviews that we used are called teaching/learning interviews.
12-14

 Unlike more 

commonly used clinical interviews where the goal is to probe students reasoning, the focus of a 

teaching/learning interview is to find out not just how students reason, but also how students might 

change the ways in which they reason based on scaffolding and hints provided by the interviewer. 

Thus, teaching/learning interviews are used to find out how people learn and how such learning can be 

facilitated. In this spirit, students when presented with a problem were asked to think aloud as they 

attempted to solve the problem on their own. If the student was unable to proceed, or was clearly 

headed in a wrong direction, after a while the interviewer would interject by asking the student leading 

questions and providing hints to enable the student to progress toward the solution of the problem. 
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In each of the four one-hour interviews, students were asked to solve three to five problems on a 

topic in electricity and magnetism. The topics included charge distribution and electric field in 

interview 5, resistance and capacitance in interview 6, current density and Ampère’s law in interview 

7, and RLC circuit in interview 8. These problems spanned a broad range of difficulty and required 

several different mathematical skills. In this paper, we only discuss the problems involving integration. 

The problem statements will be presented in the results and discussion section when students’ 

difficulties in solving the problems are discussed. Students’ difficulties with integration in Ampère’s 

law require in-depth studies on this topic, which have been completed by Manogue et al.
11

 and 

Wallace and Chasteen
10

, so we will not discuss students’ difficulties with integration in Ampère’s law 

in this paper. 

All interviews were video-taped and audio-taped and were transcribed verbatim. Students’ 

worksheets as well as interviewer’s field notes were also collected. We first examined the field notes 

to identify interesting points in each interview then referred to the student’s worksheet and interview 

transcripts for details on what students wrote and said. We focused our attention on how students 

recognized the need of an integral and how they set up and computed the desired integral. We listed all 

errors students made and the number of students making each error, and the hints provided by the 

interviewer, if any. Finally, we looked for the most common errors and the emergent themes. 

IV. RESULTS 

Many problems in E&M involve calculating a physical quantity from other non-constant 

quantities. Unlike typical problems in calculus courses in which students are given integrals to 

compute, physics problems usually do not have pre-determined integrals and even do not indicate that 

integrals are needed to solve the problems. Hence, students must be able to recognize the need for an 

integral and set up the desired integral from the physics scenario described in the problem statement. 

So the first important step in solving a problem is to recognize whether or not a problem requires 

integration. This step is not trivial for most students because they usually apply the formulas from the 

textbook without noticing the conditions under which those formulas hold. For example, the formula 

of resistance 
L

R
A

ρ=  only holds for a conductor with constant resistivity ρ  and constant cross-

sectional area A  along its length L , so if ρ  or A  or both of them are not constant, then an integral 

must be employed to calculate resistance. Research by Meredith and Marrongelle
8
, as mentioned in the 

literature review, reveals the resources that students invoke to cue integration. 

The central idea underlying the integral is accumulation – adding up infinitesimal amounts of a 

physical quantity to obtain the total amount of that quantity (e.g. resistance) or adding up infinitesimal 

effects to obtain the total effect (e.g. electric field). So to obtain a correct integral, students must have 

the correct expression for the infinitesimal elements and add up those elements in an appropriate 

manner (e.g. vectorially, reciprocally). An integral is ready to be computed only after all these steps 

are done correctly. In summary, the application of integration in physics problems can be divided into 

four steps: 

(i)  recognize the need for an integral, 

(ii) set up the expression of the infinitesimal elements,  

(iii) accumulate the infinitesimal elements, and 

(iv)  compute the integral. 

A common theme observed in our interviews was that all students, at some point during the 

interviews, expressed their understanding of an integral as an accumulation of infinitesimal elements. 

However, only one or two of them could carry out this strategy without assistance from the 
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interviewer. All other students were not confident in performing the steps and needed guidance 

through the process. 

In each of the following sub-sections, we discuss the difficulties students encounter at each of the 

steps mentioned above. At each step, we will start with a general description of the difficulties and 

then present examples of those difficulties in each of the problems under investigation as well as the 

number of students making each error. We will use pseudonyms for the students mentioned in these 

sub-sections. 

A. Students’ recognition of integration 

Most of the students in our interviews did not have significant difficulty recognizing the need for 

integration in solving the problems. We observed that the non-constant physical quantity given in the 

problem statement was the major cue for integration, while recalling similar situations was the strategy 

used by a few students. These findings are consistent with those of Meredith and Marrongelle which 

state that the recall cue and the dependence cue are the most common cues used by the students to cue 

integration in electrostatic problems. So in this sub-section, we will describe how our students 

recognized the use of integration in our interview problems and also relate with the findings of 

Meredith and Marrongelle in their study. 

 
Figure 1. The charged arch problem (interview 5) 

 

 
Figure 2. The charged rod problem (interview 5) 

The charged arch problem (Figure 1) and the charged rod problem (Figure 2) were asked in 

interview 5. These problems were very similar to the homework and exam problems in the course, so 
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all students stated that they had to set up an integral to calculate the electric field. In other words, the 

recall cue was used by the students to cue integration in these familiar problems. 

 
Figure 3. The cylindrical conductor problem (interview 6) 

On the cylindrical conductor problem (Figure 3), 12 out of 15 students stated, with different 

levels of confidence, that an integral was needed because the resistivity was changing along the 

conductor. The reasoning provided by David “since ρ isn’t constant we’re going to have to do an 

integral” was typical for students who were confident with their reasoning. On the other hand, the 

question posed by Mary, after setting up the expression 
xL

A

α
, “Do I have to put an integral 

somewhere?” indicated her uncertainty about the use of integration in the problem. The remaining 

three students also arrived at the expression 
xL

A

α
 but stated that was the final answer. When the 

interviewer hinted that the final answer should not contain x , these students were able to recognize 

that they needed an integral. The following excerpt is typical among this group of students. 

Interviewer: Is this [
xL

A

α
] your final answer? 

Brian: Uh … yes. 

Interviewer: But that answer contains x  which is changing. 

Brian: Okay … so … should I use integration? 

The cylindrical problem was not asked on any homework or exam in the course, so the recall cue 

was not employed. Instead, the majority of students recognized the need for an integral based on the 

non-constant resistivity that was given, i.e. they employed the dependence cue in this problem. 

Guiding the students to think of the dependence cue was the strategy employed by the interviewer to 

hint students who did not spontaneously recognize the use of the integral as in the excerpt above. 

 
Figure 4. The truncated-cone conductor problem (interview 6) 
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The truncated-cone conductor problem (Figure 4) followed the cylindrical conductor problem in 

interview 6. Thirteen out of 15 students were able to recognize comparing this problem with the 

cylindrical conductor problem. They stated that they could use the integral set up in the cylindrical 

conductor problem except that the area was then a variable. The following excerpt demonstrates this 

reasoning. 

Interviewer: Let’s move on to the next problem [the truncated-cone conductor problem] 

James: Alright. The tiny bit in R equals constant ρ  times change in L over change in area 

[writes 
dL

dR
A

ρ
= , then replaces A with 21

4
Dπ ] so basically this is the same integral as 

in the problem we’ve just done. This one now has two variables. We're not summing any 

changes in diameter, we're just summing the length pieces. Um so ... [writes 

21

4

dL
R

D

ρ

π
= ∫ ] ... little d and big D, so we have to incorporate that in there somehow. 

The other two students wrote an integral with dA  – the infinitesimal cross-sectional area – as the 

infinitesimal term. This error will be discussed in sub-section B because it is related to the expression 

of the infinitesimal quantity. 

 

 
Figure 5. The capacitor problem (interview 6) 

The capacitor problem (Figure 5) was the last problem of interview 6. Only 12 out of 15 students 

got to this problem within the one-hour time limit of the interview. All of them stated that they had to 

use integral to calculate the capacitance because the diameter was not constant. The following excerpt 

is typical for this reasoning. 

Interviewer: Now we have the last problem. [the capacitor problem] 

James: Okay… So here we’re trying to find capacitance which equals 0 A

D

ε
. Diameter is not 

going to be constant so we are going to have C equals [writes 0 A
C

D

ε
= ∫ ] 0ε  is still 

constant though. 

In this excerpt, the student recalled the formula for the capacitance of a parallel-plates capacitor 

and identified non-constant and constant quantities. As he recognized that the diameters of the plates 

were not the same, he decided that the capacitance must be calculated by an integral. This is evidence 

of the use of the dependence cue to cue integration in this problem. 
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Figure 6. The current problem (interview 7) 

The current problem (Figure 6) was asked in interview 7. This problem was one of the homework 

problems that students were asked prior to the interview. Thirteen out of 15 students stated that they 

needed to have an integral to calculate the total current. These students recognized the use of integral 

by recalling the homework problem or reasoning on the non-constant current density, i.e. both the 

recall cue and the dependence cue were used by the students in this problem. The other two students 

attempted to find the total current by multiplying the current density at the surface of the wire by the 

total cross-sectional area of the wire. Upon being hinted that the current density had different values at 

different distances from the center of the wire, these students stated that they had to do an integral. The 

following excerpt was from an interview with one of these students. 

Interviewer: How do you find the total current in this problem? [the current problem] 

Chelsea: Current is j  times A . 

Interviewer: What value of j  in this problem? 

Chelsea: Well  j  is α  times r , and the radius is R , so j  is α times R . [writes I RAα= ] 

Interviewer: So what is A ? 

Chelsea: A  is … pi R  squared … [writes 2 3
I RA R R Rα α π απ= = = ] 

Interviewer: But the current density is changing as you go from the center to the edge of the 

wire, so it’s not always α  times R . 

Chelsea: Oh okay … so then I will do an integral. 

Interviewer: How do you know you have to do an integral? 

Chelsea: ‘Cause you said j  was changing. 

In this excerpt, the student attempted to use the value of the current density at the edge of the wire 

to plug in the equation for current. Upon being hinted that the current density was changing, she was 

able to recognize the need for an integral. Her reasoning “cause you said j  was changing” indicates 

that she used the dependence cue to cue integration after the hint. 

In conclusion, we found that most of the students could easily recognize the need for an integral in 

the problem. Students’ familiarity with the problems and the presence of the non-constant quantities 

were the major cues for students to think of using integration. This finding agrees with the finding of 

Meredith and Marrongelle that the recall cue and the dependence cue were most commonly used by 

students to cue integration in physics problems.
8
 In our study, students usually used the recall cue in 

problems which were familiar to them, and used the dependence cue in unfamiliar problems. Guiding 

students’ attention to the non-constant quantity to trigger the dependence cue was also a productive 

strategy used by the interviewer to help students recognize the use of the integral when they could not 

invoke it by themselves. 
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B. Set up the expression for the infinitesimal quantities 

In order to calculate an integral, one must know the variable of integration. One way to do that is 

to look at the infinitesimal term (e.g. dx , dr , dθ , …) in the integral. In physics problems, the 

infinitesimal term also carries a physical meaning that must be understood while setting up the 

integral. For example, if ( )F x  is a function of force with respect to position x , then ( )F x dx∫  means 

integrating the product of the force ( )F x  at position x  and the corresponding infinitesimal distance 

dx , in the direction of the force to obtain the total work done over the whole distance. However, 

( )F t dt∫  means integrating the product of the force ( )F t  at time t  and the corresponding 

infinitesimal time interval dt  to obtain the total impulse due to the force over the total time interval. In 

these examples, dx  and dt  not only indicate the variable of integration but also have their own 

physical meanings: infinitesimal distance and infinitesimal time interval. So it is mathematically 

incomplete and physically meaningless to write the integral as ( )F x∫ . However, it was observed that 

many students in our interviews either set up the integral without the infinitesimal term or simply 

appended it to the integrand or to whatever quantity was changing. These actions essentially changed 

the physical meaning of the integrand. 

Charged arch problem (Figure 1): Starting with the formula for the electric field due to a point 

charge 
2

0

1

4

q
E

rπε
= , all students were able to write the electric field due to a charge element dq  as 

2

0

1

4

dq
dE

rπε
= . 

Charged rod problem (Figure 2): This problem followed the charged arch problem in the same 

interview. After doing the charged arch problem, all students knew that they had to integrate 

2

0

1

4

dq
dE

rπε
= . 

Cylindrical conductor problem (Figure 3): To solve this problem, one must set up the expression 

( )
dx

dR x
A

ρ=  for the infinitesimal resistance of a thin slice of the conductor, then integrate it to find 

the total resistance ( )
0

L
dx

R x
A

ρ= ∫ , where A  is the constant cross-sectional area of the conductor. 

Eight out of 15 students started with the formula of resistance 
L

R
A

ρ=  and then set up the integral 

( )
L

R x
A

ρ= ∫  or ( )
L

R x dx
A

ρ= ∫ . The first integral was mathematically incomplete and the second 

integral did not represent any physical quantity. By simply appending the infinitesimal term dx  into 

the integrand, students changed the physical meaning of the infinitesimal quantity. For example, the 

expression 
dx

A

ρ
 represents the resistance of the infinitesimally thin conductor whose length was dx , 

while the expression 
L

dx
A

ρ
, obtained by appending dx  into the formula for resistance, did not 

represent any physical quantity. The following excerpt was taken from the interview with a student 

who set up the integral ( )
L

R x
A

ρ= ∫  and then appended the term dx  into the integrand when being 

asked about the variable of integration. 
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Stephanie: So general equation [writes 
2

4L L
R

A D

ρ ρ

π
= = ] and then this [ ρ ] is a function of x  and 

... I have to do something with the integral because we have to go from the zero point to 

L. 

Interviewer: Okay, so integral of what? 

Stephanie: Of ( )xρ . [writes ( )
2

4L
x

D
ρ

π∫
] 

Interviewer: Uh huh. But what variable are you taking integral with? 

Stephanie: Variable here is x . 

Interviewer: So you should have an infinitesimal term to indicate that …  

Stephanie: What do you mean by infinitesimal term? 

Interviewer: I mean dx . 

Stephanie: Okay. [writes ( )
2

0

4
L

L
x dx

D
ρ

π∫
] So four L over pi D squared are all constants and you 

have the integral of ( )xρ  that's gonna go from 0 ... to ... L [does the integral and gets 

3

2

2 L

D

α

π
] 

Interviewer: Okay … Let's see, you appended dx  into the integrand before taking the integral. 

What is the meaning of dx ? 

Stephanie: It is the variable of the integral. 

Interviewer: Yeah, right, but what is the physical quantity that dx  represents? 

Stephanie: Physical quantity? Um … I don’t know … It’s just dx . 

Interviewer: Alright, dx  is a small length segment along the conductor. With that, can you tell 

the meaning of the whole integral that you have? 

Stephanie: Um ... going from there to there. [two ends of the cylinder] 

Interviewer: No, I mean the process underlying integration. 

Stephanie: Is it the adding small pieces thing? 

Interviewer: Yeah, right. So in your integral, what are the pieces that you add? 

Stephanie: The x  values … or the cross-section values. 

Interviewer: Okay, from your integral, the small piece is ( )
2

4L
x dx

D
ρ

π
. Can you explain the 

physical meaning of this term? 

Stephanie: I don’t know. 

Interviewer: Okay, in this expression for the piece, you have the total length L , resistivity 

( )xρ , and infinitesimal length dx  on the numerator and area 
2

4

Dπ
 on the denominator. 
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But in the formula for resistance 
L

R
A

ρ
= , there is only one length on the numerator. So 

the expression you have does not represent resistance of a piece of the conductor. 

Stephanie: So I should remove this L  then. 

Interviewer: Yes, because you already have the infinitesimal length dx . 

Stephanie: Got ya. 

Stephanie easily recognized that she needed to do an integral “to go from the zero point to L.” 

However, the integral she set up after that did not have an infinitesimal term dx . She indicated that she 

did not know what the interviewer meant by “infinitesimal term” and simply appended it to her 

integral without any changes to the integrand. Her answer to the interviewer’s question on the physical 

meaning of dx  - “I don’t know … it’s just dx ” – indicated that she did not know what dx  represented. 

Even after being told explicitly that dx  represented an infinitesimal length segment, she was still 

unable to interpret the physical meaning of the expression she set up for the pieces, and therefore was 

unable to recognize that her expression for the infinitesimal piece did not represent the resistance of an 

infinitesimal conductor. This excerpt is an example of the instance that students’ lack of understanding 

of the infinitesimal term led them to set up incorrect expressions for the infinitesimal quantity. In this 

case, Stephanie included both L  and dx  in the expression of infinitesimal resistance because she did 

not know what dx  meant in the problem. 

Among the remaining seven students, one student recognized that she needed an infinitesimal 

length dL  in place of L  in the formula, which was correct. Three other students recognized this after 

being reminded that L  was the length of the whole conductor while we only considered the length dx  

of an infinitesimal conductor at location x . The other three students did not know what to do in the 

problem and needed step by step instruction to solve the problem. 

Truncated-cone conductor problem (Figure 4): Twelve out of 15 students stated that they could 

use the integral set up in the cylindrical conductor problem but with area being a variable. They could 

also recognize that since there were two variables in that integral: x  and A , they had to write one 

variable in terms of the other in order to integrate. The transcript presented when we discussed this 

problem in sub-section A is an example from this group of students. All of the students needed a lot of 

guidance on basic geometry to write the area A  in terms of x . 

One student set up the correct integral but stated that the limits of integral were from d  to D  

because the diameter was changing. Upon being hinted that dx  indicated integration with respect to x , 

hence the limits should be the range of x , this student recognized that the limits were from 0 to L . 

Therefore, we interpret this student’s wrong choice of limits as evidence that she did not understand 

that dx  indicated the integration variable x .  

Two other students set up the integral for resistance as 

2

2

2

2

D

d

L
R

dA

π

π

ρ

 
 
 

 
 
 

= ∫  . These students stated that 

because area A  was changing, they used the infinitesimal area dA . Obviously, the term 
L

dA

ρ
 did not 

represent the infinitesimal resistance of a thin slice of the conductor. 

Capacitor problem (Figure 5):  To solve this problem, students needed to think of a capacitor with 

a large separation between the plates as a series combination of several capacitors made of fictitious 

plates separated by an infinitesimal distance dx . This strategy was novel to many students, so they 

attempted to use the formula for capacitance of a capacitor with small separation. The students needed 
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to be told that the formula was only applicable to the case when the separation was small compared to 

the diameters of the plates, and hence they had to consider the capacitor with a large separation as 

being made of several plates close to each other.  Then, 10 out of 12 students were able to set up the 

correct expression for capacitance of a capacitor with infinitesimal separation between the plates 

( )A x
dC

dx
ε= . The other two students used the differential area dA  and got 

dA
dC

L
ε= . This error was 

similar to the error observed in the truncated-cone resistor problem, where students had 
L

dA

ρ
 as the 

infinitesimal resistance. This type of error suggested that these students seemed to simply prefix “ d ” 

to whatever quantity that was changing (i.e. area A  in these cases) without understanding the meaning 

of the infinitesimal term in the integral. 

Current problem (Figure 6): The correct expression for the infinitesimal current in the wire is 

( )j r dA , where ( )j r  is the current density at a distance r  from the center of the wire and dA  is the 

area of an infinitesimally thin ring on the cross-section of the wire. Thirteen out of 15 students made 

mistakes similar to those observed in the cylindrical conductor problems: they set up ( )I A j r= ∫  or 

( )I A j r dr= ∫ , where A  was the total cross-sectional area of the wire. This is further evidence that 

students seemed to integrate whatever was changing without understanding the physical meaning of 

the expression for the infinitesimal quantity, which usually led them to incorrect integrals. When the 

interviewer reminded students about the formula ( )I j r dA= ∫ , all students agreed that they had seen 

it before but then failed to explain what dA  meant in that formula. 

In conclusion, we found that students’ failure in setting up the expression for the infinitesimal 

quantity was due to their lack of understanding of the physical meaning carried by the infinitesimal 

term (e.g. dx , dr , dθ  …) and the expression for the infinitesimal quantity. This lack of 

understanding caused students to ignore the infinitesimal term or to simply append it to the integrand, 

or even to prefix d  to whatever quantity was changing when setting up the expression for the 

infinitesimal quantity. All of these actions essentially changed the physical meaning of the expression 

being set up as discussed in the truncated-cone conductor, the capacitor, and the current problems 

above. 

C. Accumulating the infinitesimal quantities 

It was observed in our interviews that after having the correct expression for the infinitesimal 

quantity, almost all students started integrating that expression without attending to how these 

quantities should be added up. 

Charged arch problem (Figure 1): Electric field is a vector quantity, so the electric fields dE  due 

to the infinitesimal elements of charge on the arch must be added vectorially. Eight out of 15 students 

in our interview did not notice the vector nature of dE  and integrated the whole dE , while the other 

seven students used symmetry to argue that only the y-component of the electric field due to each 

charge element contributed to the total field and integrated only the y-component of dE . 

Charged rod problem (Figure 2): The electric fields dE  due to all infinitesimal elements of 

charge dq  on the rod were pointing in the same direction so the total field could be obtained by simply 

integrating dE . So even though all of the students could do this step, we could not conclude whether 

they understood that they were adding vectors having the same direction or were just adding the 

electric fields as if they were scalars. 
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Cylindrical conductor and truncated-cone conductor problems (Figures 3 and 4): The slices that 

made up the conductor were connected in series, so the total resistance could be obtained by adding up 

the resistance of these slices. When the thickness of each slice became infinitesimally small, this was 

done by integrating dR . Similarly, in the current problem (Figure 6), because the currents in all thin 

rings that made up the cross section of the wire were in the same direction, the total current could be 

obtained by integrating the infinitesimal current dI  in each ring. In these three problems, the total 

quantities were obtained by simply integrating the infinitesimal quantities, i.e. R dR= ∫  and I dI= ∫ , 

so we could not conclude whether or not students understood how the infinitesimal quantities must be 

accumulated. 

Capacitor problem (Figure 5): The capacitor in this problem could be viewed as a series of 

capacitors whose plates were separated by a small distance. The equivalent capacitance could be found 

by adding the capacitance of each individual capacitor reciprocally, i.e. 
1 2

1 1 1
...

eq
C C C

= + +  which 

became 
1 1

eq
C dC

= ∫  when the separation between the plates became infinitesimally small. This 

problem demanded more than just integrating the infinitesimal quantities to obtain the total quantity. It 

also required an understanding of integration in association with the physical situation of the problem. 

Out of 12 students who attempted the capacitor problem, only two students spontaneously 

recognized that they had to integrate 
1

dC
. The other 10 students integrated dC  and got the integral 

( )

0

L A x
C dC

dx
ε= =∫ ∫ . These students immediately recognized that this integral had dx  in the 

denominator, so they attempted to bring dx  to the numerator although they could not give a reason 

why they could do that. The interviewer had to give hints to cue students’ attention to the arrangement 

of the capacitors. The following excerpt is typical in this situation. 

Aaron: … since L is going to turn into dx  I think … but to make that … it should be dx  in the 

denominator … [writes 

2

0

4
L

d

dx

π

ε∫  and then flips the integrand] 

Interviewer: Why did you flip it? 

Aaron: Well, so that dx  is in the numerator. 

Interviewer: You must have a reason for flipping the integrand. 

Aaron: Oh, okay …  

Interviewer: What does your integrand mean? 

Aaron: Like if you slice it up it’s just one of the slices. 

Interviewer: Okay, but when you add up capacitance, you must know how the capacitors are 

connected, that is, in parallel or in series. 

Aaron: Um … it doesn’t say. 

Interviewer: Look at how the plates are arranged. 

Aaron: Um … 

Interviewer: You should draw some of the fictitious plates to see how they are arranged. 
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Aaron: [draws the plates] Okay … so … they are in series, aren’t they? 

Interviewer: Yes, and what is the equation for capacitors in series? 

Aaron: It’s the one over thing. 

Interviewer: So how should you integrate in this problem? 

Aaron: Well … because integral means sum … and I have … so the integral is … [writes 
1

dC∫
] 

In this excerpt, Aaron indicated an understanding of the meaning of the integrand, the structure of 

the integrand (i.e. dx  must be in the numerator), and the formula for capacitors in series. However, he 

was unable to recognize that the capacitors were in series until he drew the fictitious plates between 

the two plates of the capacitor. Similar situations also occurred with other students who integrated 

dC . This evidence suggested that students’ lack of visualization of the physical scenario might 

account for their disregard of how the quantity must be accumulated. 

D. Computing the integral 

 The last step in applying integration to physics problems is to compute the integral set up in the 

previous three steps. This was expected to be an easy task for students because they had practiced 

computing integrals in their calculus courses. However, students still had some difficulties with 

computing the integrals in our interview problems. 

Charged arch problem (Figure 1): Upon having the integral for the electric field due to the arch 

2

0

1
cos

4

dq
E

r
θ

πε
= ∫ , 13 out of 15 students were unable to recall the relation dq dsλ=  between the 

charge element dq  and the length ds  of that element along the arch. Eleven out of 15 students could 

not relate infinitesimal length of the arc to the infinitesimal angle it subtended at the center: ds rdθ= . 

After the variable conversion, the resulting simplified integral was 

/ 2

2

/ 2

cos d

π

π

θ θ
−

∫ . All 15 students 

needed to be given the equation ( )2 1
cos 1 cos 2

2
θ θ= +  and two of them needed assistance in 

computing the integral explicitly. 

Charged rod problem (Figure 2): We found that students’ difficulties with computing the integral 

in this problem were due to students’ inability to interpret the physical meaning of symbols. Twelve 

out of 15 students interpreted r  in Coulomb’s law as “radius,” so they were unable to decide whether 

r was a constant or a variable in the integral. The charged rod problem came right after the charged 

arch problem, so all students were then able to write dq dsλ= , but 11 of them were unable to 

recognize that ds dx=  in this problem. 

Cylindrical conductor problem (Figure 3): The integral in this problem was very simple so all 

students were able to compute it without assistance from the interviewer. 

Truncated-cone conductor (Figure 4) and capacitor problems (Figure 5): The most difficult part 

of computing this integral was to figure out the expression for the cross-sectional area as a function of 

position. However, because it was not the purpose of the interview to test students’ geometric skills, 

the expression for ( )A x  was provided to the students if they failed to get it after a few attempts. The 
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resulting simplified integral was 
2

0

L
dx

d D
D x

L

− 
+ 

 

∫  where D , d , L  were constants. Only two students 

succeeded in computing this integral using substitution. Others needed to be given the result of the 

integral. In the truncated-cone conductor problem, one student set the limits of the integral as d  and 

D  (i.e. the diameters of the conductor at two ends) based on the fact that the diameter was changing. 

The same error was made by five students when solving the capacitor problem, including those who 

had the correct limits for the integral in the truncated-cone conductor problem. 

Current problem (Figure 6): The most difficult part of computing the integral in this problem was 

to write the differential cross-sectional area dA  in terms of the distance r  from the center of the wire. 

Asking students to take the derivative of the cross-sectional area 2A rπ=  helped students derive the 

expression 2dA rdrπ= . The resulting integral was very simple, so all students were able to compute 

it. 

In summary, we found that students encountered a number of difficulties in computing the 

integrals in physics problems. Some of these difficulties could be attributed primarily to students’ 

misunderstanding of the physical meaning of symbols in the integrals. Other difficulties arose when 

students could not recall basic mathematical equations. A few students still had difficulties 

determining the limits of the integrals. Many students were unable to compute mathematical integrals. 

V. CONCLUSION 

In this study, we took a close look at students solving problems involving integration in the 

context of electricity. We found that students’ failure in applying integration to our interview problems 

occurred when students set up the expressions for the infinitesimal quantities and accumulated those 

quantities using integral. These difficulties might be attributed primarily to students’ inability to 

interpret the meaning of the infinitesimal term dx  in the integral and to students’ disregard of how the 

quantities must be added up. A few students still had difficulties recognizing when an integral was 

needed in a problem. Students also had difficulties in computing the integrals they had set up, mostly 

because they were unable to interpret the physical meaning of the symbols and invoke basic 

mathematical equations. 

We answer our research question: What are the common difficulties that students encounter when 

solving problems in electricity involving integration? Students generally did not have significant 

difficulty recognizing the need for integration in a problem. However, students did have significant 

difficulties setting up and computing the desired integral. These difficulties included setting up an 

incorrect expression for the infinitesimal quantity and/or accumulating the infinitesimal quantities in 

an inappropriate manner. Determining the limits of the integrals, relating variables in an integral, and 

computing the integrals algebraically were also difficulties faced by some of the students. 

These findings align with those from other research on students’ difficulties with integration. We 

found that the non-constant quantity given, either mathematically (e.g. resistivity as a function of 

position, charge distribution as a function of angle) or pictorially (e.g. figure of a conductor with 

changing diameter), in the problem statement was the cue for most students to think of integration in a 

problem. This finding supports the conclusion of Meredith and Marrongelle
8
 that the most common 

resource that students use to cue integration is the dependence cue. However, the dependence cue, as 

pointed out by Meredith and Marrongelle, is only helpful when the non-constant quantity is a density 

or a rate of change. This finding also aligns with the fact that many students in our study failed to set 

up the correct integral in problems involving non-constant quantities which were not rates of change 

(e.g. resistivity, diameter). 
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Although most of the students indicated an understanding of integration as an accumulating 

process, they were not confident in carrying out the process and needed detailed guidance from the 

interviewer. Some of the students had difficulties determining the limits of integral. These 

observations are similar to those described by Cui et al.
2
 

Our study extends the literature on students’ use of integration in physics problem solving. We 

found that the major difficulties students encountered when attempting to set up an integral in a 

physics problem were due to students’ inability to understand the infinitesimal term in the integral and 

failure to understand the notion of accumulation of an infinitesimal quantity. 

Meredith and Marrongelle
8
 suggested that the parts-of-a-whole symbolic form was a powerful and 

flexible resource to cue integration and proposed instructional strategies to promote students’ use of 

this recourse as a cue for integration in physics problems. Our study points out that setting up a correct 

integral in a physics problem requires more than recognizing the need for an integral. It also requires 

setting up the correct expression for the infinitesimal quantity that each “part” represents and 

accumulating that quantity in a correct manner. There were several students in our interviews who 

mentioned the sum of infinitesimally small elements (although they did not use that terminology) at 

some point while solving the problems, indicating that they had a rough idea of the parts-of-a-whole 

resource, but then set up the incorrect expression for the “part” or did not pay attention to how the 

“parts” should be added up. So we expand upon the conclusion of Meredith and Marrongelle that 

although the parts-of-a-whole symbolic form is the most powerful and flexible way to think of 

integration, it does not guarantee the correctness of the integral that is set up. 

VI. LIMITATIONS AND FUTURE WORK 

The research methodology used in this study was individual interview. This method allowed us to 

gain detailed insight into students’ performance on the problems and also enabled us to interview the 

same students several times on different topics during the semester. On the other hand, the individual 

interview method limited the number of student participants in the study. There were only 15 students 

in our study compared to more than 200 students enrolled in the course. Due to this fact, the major 

limitation of this study is the generalizability of its findings. 

Based on our interview findings, we plan to develop tutorial materials to address students’ 

difficulties with integration and implement them with all of the students in the course (usually around 

200+ students) in future semesters when the course is offered to test the effects of those materials in 

helping students learn to solve physics problems involving integration. As discussed in this paper, the 

major challenges students faced when solving problems involving integration were in setting up the 

expression for the infinitesimal quantity and accumulating those quantities in an appropriate manner. 

Therefore, our tutorials will focus on helping students learn the meaning of the infinitesimal quantity 

(e.g. dx , dr , dθ , …) in the integral and the accumulation process underlying the integral. Our 

tentative strategy is to use a sample related problem segmented into a sequence of several smaller 

exercises. The first exercise asks students to calculate the total value of a physical quantity of some 

individual objects (e.g. the equivalent resistance of a few separate resistors, the equivalent capacitance 

of a few separate capacitors). The follow-up exercises are variations of the first exercise. In these 

exercises, the individual objects evolve to become infinitesimal parts of a larger object. We 

hypothesize that by solving these exercises, students might learn how the total quantity of an object 

becomes an infinitesimal quantity of a larger object and how a sum becomes an integral. 
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