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Abstract  
Teaching-learning interviews have been used in education to identify students’ conceptual 
weaknesses and to improve learning. This effort utilized teaching-learning interviews in a Spring 
2010 linear systems course to (a) identify the conceptual difficulties that students face when 
studying Fourier series and (b) improve students’ understanding of this topic.  These interviews 
attempted to focus more on higher-level Fourier series concepts (consistent with levels 4 through 
6 in Bloom’s taxonomy) and less on the procedural calculations and plotting (levels 1 through 3 
in Bloom’s taxonomy) in an effort to attempt to formalize assessment of this topic area relative 
to a well-established learning framework.  Twenty eight students were interviewed for this study 
using a scripted protocol, where interview sessions lasted about one hour each.   Conceptual 
struggles were identified in thematic areas such as (a) the definition of the mathematical integral 
and its connections to signal average/behavior, (b) properties of even/odd functions and their 
relationship to the trigonometric basis set, and (c) the links between time shifts/inversion and the 
resulting phases of the contributing coefficients. 

I. Introduction 
Linear Systems is a required course in most electrical and computer engineering curricula that 
addresses subjects such as convolution, Fourier series, and continuous/discrete Fourier 
transforms.  This course is widely perceived as useful but difficult, as the subjects tend to be 
higher-level concepts that rely on a well-developed understanding of lower-level mathematical 
constructs and procedures.1-5  Students with an inadequate mathematical foundation and a poor 
sense of the underlying systems theory regularly struggle with such subjects, as they are typically 
able to perform sequences of the underlying calculations but cannot piece together the higher 
conceptual relationships that drive these procedures.  As a result, many students are unable to 
address exam questions and analysis problems that deviate from a solution recipe described in 
the textbook, and they often cannot explain how slight changes in mathematical renderings will 
affect system or signal behavior. 

In order to better understand how to address these issues, it is helpful to discuss them within the 
context of a cognition and learning framework.  Bloom’s taxonomy is a broadly accepted 
classification scheme for the cognitive learning domain that arranges intellectual behavior into 
six levels of increasing abstractness or complexity6 (see Figure 1; Questions in parentheses are 
based on the updated Bloom’s taxonomy7, 8)  Linear systems subjects often address multiple 
levels within Bloom’s taxonomy simultaneously, which is in contrast to courses leading up to 
linear systems, many of which focus primarily on procedural calculations and plotting (Bloom’s 
levels 1 through 3).  As a result, students often struggle with, e.g., higher-level Fourier series 
concepts that are more consistent with levels 4 through 6, where they are asked to construct 
signals out of more rudimentary building blocks and assess changes in signal behavior due to 
changes in the associated coefficients. 

In order to more clearly identify the higher-level linear systems concepts with which students 
struggle, the authors decided to conduct teaching-learning interviews similar to those that have 



been used in the past to identify students’ conceptual weaknesses and to improve learning9. To 
this end, twenty eight students in a Spring 2010 section of Linear Systems were interviewed 
using a scripted protocol, where interview sessions lasted about one hour each.   The interview 
protocol, the sample questions, the conceptual misunderstandings related to Fourier series, and 
the learning assistance methods (i.e., interviewer help/prompts) utilized in the interviews are 
discussed in more detail in the paper.  

1. Knowledge:  arrange, define, duplicate, label, list, memorize, name, order, recognize, relate, 
recall, repeat, reproduce, state (Remembering:  Can the student recall or remember the 
information?) 

2. Comprehension:  classify, describe, discuss, explain, express, identify, indicate, locate, 
recognize, report, restate, review, select, translate (Understanding:  Can the student explain 
ideas or concepts?) 

3. Application:  apply, choose, demonstrate, dramatize, employ, illustrate, interpret, operate, 
practice, schedule, sketch, solve, use, write (Applying:  Can the student use the information 
in a new way?) 

4. Analysis:  analyze, appraise, calculate, categorize, compare, contrast, criticize, differentiate, 
discriminate, distinguish, examine, experiment, question, test (Analyzing:  Can the student 
distinguish between the different parts?) 

5. Synthesis:  arrange, assemble, collect, compose, construct, create, design, develop, 
formulate, manage, organize, plan, prepare, propose, set up, write (Creating:  Can the 
student create a new product or point of view?)  

6. Evaluation:  appraise, argue, assess, attach, choose, compare, defend, estimate, judge, 
predict, rate, core, select, support, value, evaluate (Evaluating:  Can the student justify a 
stand or decision?) 

Figure 1. Classification levels in Bloom’s taxonomy. 

   



II. Theory 
A focus on Fourier series is common in linear systems courses, as the subject provides a 
conceptual bridge between the time and frequency domains.  In other words, a Fourier series has 
the time-domain character that is familiar to students, yet its coefficients convey frequency-
dependent information.  The role and distribution of these coefficients makes for interesting 
classroom discussions because the students must get past the actions required to compute the 
coefficients and think more deeply about the coefficients’ effects on the character of the time-
dependent waveform.  When introducing this subject, one can begin with the thought that any 
periodic signal, f(t), can be decomposed into a sum of sinusoids, each with a different magnitude, 
phase, and frequency.  A trigonometric Fourier series (TFS), fTFS(t), can be expressed as 
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is the DC, or average, value of the signal over a given time interval of duration T0 = 1/f0 seconds 
(f0 = ω0/2π is referred to as the “fundamental” frequency).  The coefficients an and bn represent 
the magnitudes of the cosines (even functions) and sines (odd functions) that constitute the 
signal.  These coefficients are determined using the following expressions 
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where n is an integer that represents the number of harmonics used to reconstruct the signal.  The 
coefficients an and bn are positive or negative real numbers.  Also, note that if the original signal, 
f(t), is not periodic, the Fourier series approximation assumes periodicity outside of the original 
time range (e.g., for t < t1 and t > t + T0).  
The information in a trigonometric Fourier series can be encapsulated in a set of coefficients, Cn 
and θn, that represent the magnitudes and phases of these sinusoidal components.  This is known 
as a compact trigonometric Fourier series (CTFS), where the signal f(t) is expressed as  
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These compact coefficients are related to the original Fourier series coefficients through the 
following relationships:  
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III. Methods 

A.  Overall Approach 
Student Population and Interview Timing.  The authors interviewed twenty four students in 
the Spring 2010 section of ECE 512 – Linear Systems, a course offered by the Kansas State 
University (KSU) Department of Electrical & Computer Engineering.  These students were 
predominantly undergraduate seniors in Electrical Engineering or Computer Engineering. The 
interviews were conducted (a) after the students had submitted Fourier series handwritten 
assignments, used the online linear systems modules, and taken exams on these same subjects 
but (b) before the final exam, implying that the students had absorbed the material to a level of 
understanding that would be typical at the end of a semester.  All interviews were conducted 
over a period of two weeks just prior to the final exam for the course. 

Interview Protocol.  Each interview was conducted as a one on one, teaching-learning interview 
and was videotaped for follow-on analysis, where the camera was directed over the shoulder of 
the student so that it recorded video of only the work surface in front of them.  Prior to an 
interview, a student signed a consent form (KSU IRB protocol #4691) stating their willingness to 
participate in this research exercise within the context of the overarching course experience.  
Four separate Fourier series problems were provided to each student (see the next section), 
where the student was asked to describe their work out loud as they progressed through each 
problem.  Note that these interview components were not provided in “question form” but rather 
in “exercise form,” as if the student was thinking out loud as they sat down to work a sequence 
of homework problems.  When a student reached a point where their response was incorrect or 
they could not continue, the interviewer provided help/prompts in comment/question format.  On 
average, the interview process took about an hour per student.  Areas of conceptual 
misunderstanding were recorded both during the interview and during follow-on analyses of the 
video recordings. 

Motivation for the Focus on Coefficient Roles.  These interview problems were chosen to 
specifically address the roles of the Fourier series coefficients with respect to the shapes or 
behaviors of the reconstructed Fourier series.  An understanding of these roles is an indication 
that a student has learned Fourier series concepts at a higher conceptual level, and past 
experience with exams that address Fourier series has taught the authors that describing these 
coefficient roles is a task where students begin to falter, even if they are adept at performing the 
calculations to determine the coefficients. 

 

 

 

 

 

 

 



B.  Interview Problems 
Problem #1:  A trigonometric Fourier series is used to describe the signal f(t) = t2 – 2 (see Figure 
2) over the time range of t = [-2, 2] seconds.  Determine the trigonometric Fourier series, fTFS(t) for this signal.  (Answers:  Table 1) 

• Before you start to solve the problem, estimate the sign of a0. 
• Can you describe how you solved the problem? (Use of even/odd symmetry or neither; 

the overall process; other details) 
• Given fTFS(t), what is the value of f(t) at t = 0? 

Table 1. Answers for interview problem #1. 

• Sign of a0:  
negative 
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provide a direct result, so the student must 
understand that they need to consult the plot 
rather than the Fourier series. 

 

Figure 2.  The parabolic function, f(t) = t2 – 2, used in interview problem #1. 

Problem #2:  The parameters for fTFS(t) (a0, an, and bn) are known for the original signal in 
Figure 3a). Identify how the parameters ω0, a0, an, and bn change if the original signal changes to 
each of the signals in Figure 3b, Figure 3c, and Figure 3d.  (Answers:  Table 2) 

Table 2.  Answers for interview problem #2. 
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Figure 3.  Signals for interview problem #2. 



Problem #3:  The parameters for fCTFS(t) (C0, Cn, and θn) are known for the original signal in 
Figure 4a. Identify how the parameters ω0, C0, Cn, and θn change given the signals in Figure 4b 
and Figure 4c.  (Answers:  Table 3) 

Table 3.  Answers for interview problem #3. 
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Figure 4.  Signals for interview problem #3.  



Problem #4:  The parameters for fCTFS(t) (C0, Cn, and θn) are known for the three original signals 
in Figure 5. If we wish to use these signals as building blocks to construct the signals in Figure 6, 
which signal(s) should we use? What changes in the respective fCTFS(t) parameters would be 
needed to make that happen? 

One Acceptable Answer for Figure 6a. We choose the signal in Figure 5b to generate the 
signal in Figure 6a. In this case, the signal in Figure 5b will be used twice. First, an instance of 
the signal, ଵ݂, can be flipped about the t axis, yielding  ܥ௡ଵ

ᇱ  = െܥ௡ଵ (here ܥ଴ଵ ൌ 0).  Then, the 
result will be delayed by half of the period (π/2 seconds in this case), which means the new phase 
θ௡ଵ

ᇱ  = θ௡ଵ െ గ
ଶ

n߱଴. Another instance of the signal in Figure 5b, called ଶ݂, can be added to  ଵ݂ to 

obtain signal ଷ݂. Further, the amplitude of ଷ݂will be multiplied by ½, which means  ܥ௡ଷ
ᇱ  = 

ଵ
ଶ

 .௡ଷܥ
The final step is to raise the entire signal by ½, which means ܥ଴ଷ

ᇱ ଴ଷܥ =  ൅ 1/2. 
 

One Acceptable Answer for Figure 6b.  The signals in Figure 5a and Figure 5c can be used to 
generate the signal in Figure 6b given their period and duty cycle. The dashed lines in Figure 6b 
are drawn to assist the reader. The procedure is similar to that used for Figure 6a, only a bit more 
complex. 
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Figure 5.  Building block signals for interview problem #4. 
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Figure 6.  Target signals for interview problem #4. 

   



IV. Results and Discussion 

A. Overall Themes:  Concepts that Cause Students to Struggle 
Notes taken during the individual interviews were analyzed to summarize the types of concepts 
that caused students to struggle and the types of hints that were often necessary in order to help 
students make progress on certain types of problems.  Videos acquired during each of these 
sessions were also analyzed to corroborate and supplement these findings.  This section provides 
an annotated listing of the types of concepts that were problematic for the students and the types 
of hints that were supplied to help them move forward. 

1. Physical meaning of the term ‘integral.’  For a one-dimensional function, the meaning of the 
term ‘integral’ is often defined functionally as accumulation but visually as ‘the area under the 
curve’, meaning the area between the curve and the independent axis.  This is one concept that 
all students in an upper-level linear systems course should understand, as they have experienced 
it multiple times in various contexts.  The first question in the first problem sought to assess this 
understanding when the interviewer asked students to estimate the sign of ܽ଴ by looking at the 
f(t) curve.  Some of the students (5 out of 24) had forgotten the meaning of ‘integral’ altogether, 
and another group of students (5 out of 24) understood the concept but either did not know how 
to apply it or applied it in the wrong way for this problem, such as visualizing the area between 
the curve and minus infinity as a literal interpretation of ‘area under the curve.’ 

2. Properties of even and odd functions.  For a function with even symmetry, fe(t) = fe(–t), 
whereas a function with odd symmetry has the property fo(t) = –fo(–t).  In a trigonometric Fourier 
series formulation, cosine (even) and sine (odd) functions specify the building blocks of the 
series and are paired with the coefficients  ܽ௡ and ܾ௡ with the understanding that these 
coefficients specify the amplitudes of these basis functions.  Students are instructed that if a 
function, f(t), is even, then its Fourier series will only require ܽ௡coefficients; if it is odd, only ܾ௡ 
coefficients are required.   Even so, these interviews indicated that 10 of 24 students still had 
trouble understanding the even or odd character of cosine and sine functions.  For example, if t is 
changed to –t, these students had difficulty understanding the commensurate change in  
sinሺ  ሻ behavior and therefore the related changes to an and bn.  Regardingݐ଴߱ߨሻ and cosሺ݊ݐ଴߱ߨ݊
integration of an even function, as in problem #1, the definite integral from –t to t should be 
twice the integral from 0 to t, while the definite integral of an odd function from –t to t yields 0.  
When addressing integrals in these interviews, 7 of 24 students did not use this concept to save 
time or used it in the wrong way, such as choosing wrong integration limits.  

3. Properties of the sine and cosine functions.  Other sine and cosine properties were also used 
in the interview problems. For example, when working with a compact trigonometric Fourier 
series representation, the ܥ௡ coefficient is defined as a magnitude (positive number), so when a 
term such as  ܥ௡*cosሺ݊߱ߨ଴ሻݐ is negated, the minus sign must be addressed through the angle of 
the cosine by changing cosሺ݊߱ߨ଴ሻݐ to cosሺ݊߱ߨ଴ݐ േ  .ሻ. Seven students struggled with this ideaߨ

4. Inverse frequency/period relationships.  One of the problems required each student to find 
the period and then the fundamental frequency (problem #1, question 2).  Others addressed 
changes in period or frequency, such as problem #2 question 1 (see Figure 3b), which asked how 
the frequency would change if the signal was stretched to be doubly wide. The equations for the 
relationship between frequency and period, such as ߱଴ ൌ ߨ2 ଴݂ and ଴ܶ ൌ ଶగ

ఠబ
, were given on a 

t

 



formula sheet, yet 5 of 24 students still had a little trouble, where some students were inclined to 
say the frequency also doubled. 

5. Math-to-plot versus plot-to-math disconnect.  Students seem uncomfortable establishing 
relationships between mathematical equations and plots and explaining changes in one given 
changes in the other.   In problem #2, question 2 and problem #3, question 2, the plots were 
flipped about the vertical axis and horizontal axis, respectively.  In the first case, most of the 
students could reason that the function changed from f (t) to f(–t), whereas a few students (3/24) 
misunderstood.  In the second case, some of the students described the result as f(–t) rather than 
the correct response, –f (t). If they needed a hint, students were asked to compare the previous f(–
t) plot with the plot in front of them and consider the differences.  Eventually, most of the 
students came up with the correct answer, but 20 students struggled with this concept at some 
level.  

6. The mistaken equivalence between phase shift and time shift.  In problem #3, question 1, 
the plot was moved π/4 seconds to the right in the time domain, so the CTFS function would 
become 
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where the phase representation has changed to θ௡ െ π݊߱଴/4. Most students specified a phase of 
θ௡ െ  as the answer, which implies their willingness to accept ‘phase shift’ as equal to ‘time 4/ߨ
shift,’ which is incorrect. This issue was arguably the most common mistake in the interview, as 
22 students did not get the right answer without a hint, and 2 students made an initial mistake but 
soon corrected themselves.   

7. Incorrect use of lookup aids.  A few students have trouble using lookup aids such as integral 
tables and Fourier series conversion tables.  Both types of tables were made available during 
these interviews, yet two students stumbled by using the wrong integral table or wrong Fourier 
series equations, such as the use of ׬ ׬ instead of ݔ݀ ݔ݊݅ݏ  .ݔ݀ ݔ݊݅ݏݔ

8. Inability to start in the middle.  When addressing CTFS problems, some of the students feel 
the need to start back at the TFS representation and then move those coefficients into the CTFS 
domain, which inevitably adds calculations and therefore time.  This usually leads to the correct 
answers but also implies a reliance on calculations and recipes rather than an understanding of 
the concepts of magnitude and phase. 

B. Additional Notes 
Unforeseen Benefits of Tutoring Sessions. One unforeseen benefit of this interview process 
was that, in some cases, the interview as planned turned into more of a personal tutoring session.  
This led to unsolicited feedback from many of the participants that indicated the hour-long 
interview was worth their time from that viewpoint alone, irrespective of the fact that they 
received course credit for participating in the interviews.  More specifically, some students 
mentioned that the pace and feel of the interview were different from in-class learning (which 
would be expected), since they could work with the instructor individually and spend their 
interaction time on issues directly related to their areas of misunderstanding. 



Findings Regarding Interviewer Help/Prompts.  From these interviews, it is clear that most of 
the students have reached a satisfactory level of capability with regard to the types of 
mathematical calculations that one must perform in order to calculate Fourier series 
representations of signals. 

Generalizations of Areas Where Students Struggle.  Section IV.A. noted specific areas where 
students struggled within the context of the Fourier series problems presented in the interviews.  
The following listing seeks to generalize and expand upon these areas of struggle with the 
thought that more overarching changes in pedagogy might be applied to address them.   

• Students often have difficulty ‘seeing’ the relationship between (a) mathematical 
representations and signal features and (b) changes in mathematical representations as they 
relate to changes in the visual appearance of a signal. 

• The general issue of performing the mathematical operations versus understanding their 
impact or purpose is an important discussion point.  For signals constructed from basis 
functions, students have trouble getting past the details of a mathematical process that 
employs basis functions so that they can visualize the way in which these signals are 
constructed from those fundamental building blocks.  In the case of Fourier series, these basis 
functions are cosines and sines, but other good basis sets exist (e.g., tn for polynomial 
functions). 

• Visually pulling a signal apart can be a struggle for some students.  For example, in a Fourier 
series context, it is hard for some students to visually remove the baseline (even component) 
of a signal and realize that the remaining signal may actually have odd symmetry on its own. 

• Presenting a student with a mathematical shortcut does not ensure that they will understand 
when its use is or is not justified.  This is demonstrated in Fourier series calculations by the 
use of symmetry to shorten the coefficient calculation process. 

• The inverse relationship between time and frequency is always an issue.  This issue not only 
relates to the misperception that a wider sinusoid means a higher frequency, but it includes 
misperceptions such as making a signal longer increases its bandwidth as represented by its 
TFS coefficients, or (in the discrete domain), sampling a signal faster improves the resolution 
of the coefficients in the frequency domain. 

• The mistaken equivalence between time shift and phase shift speaks to students’ fundamental 
misunderstandings about Fourier series.  If a waveform is shifted, then all of the sinusoids 
that comprise that waveform must also be shifted.  Since these sinusoids are at different 
frequencies, yet they must retain alignment relative to one another in order to retain the 
overall signal shape, then each sinusoid (building block) experiences a different phase shift, 
even though the time shifts are all equal. 

• When students do not know quite how to proceed, they fall back on process and recipe rather 
than think about the problem at a high level.  For example, to describe the change in phase 
due to a time shift, most would be more comfortable recalculating the Fourier Cn and θn 
values from scratch rather than reason through the change in coefficient values. 

C. Future Work 
In response to these lessons learned, it is clear that more future instruction (in class and in 
homework) needs to concentrate on the relationship between signal changes and their 
corresponding mathematical representations.  This instruction cannot, however, be at the expense 



of the procedural calculations that students already make as they learn Fourier series, since it 
takes time for students to get these calculations ‘under their belts.’  Additionally, this assessment 
is offered in light of the fact that current instruction *does* concentrate on some of these issues, 
yet students are not properly absorbing and retaining the concepts.   Therefore, the authors plan 
to take a two-pronged approach, where higher-level concepts are emphasized in class and 
additional practice exercises are made available through online learning module updates as 
discussed in the following paragraph.  Once these changes have been implemented, the interview 
process will be completed with a new set of students in order to ascertain whether statistically 
significant improvements have taken place in learning.  Exam questions will also be applied, 
where the results can be correlated with results from questions asked in previous semesters. 

Online Module Updates.   For several years, the authors have used online learning modules in 
these linear systems courses2, 10-13.  These online tools utilize PHP, HTML, Java, and 
PostgreSQL to generate and assess homework problems in the areas of complex numbers, signals, 
transient response, Fourier series, and Fourier transforms.  Features and benefits of this approach 
include a visually appealing user interface, custom problem sets for each student, online help, 
immediate score feedback, problem solutions, practice problems, and the opportunity for a 
student to rework categories of problems until they receive their desired score.  Currently, the 
students work on three separate Fourier series modules that address trigonometric Fourier series 
(TFS), compact trigonometric Fourier series (CTFS), and exponential Fourier series (EFS).  The 
authors are developing a higher-level-concept module that will between the CTFS module and 
the EFS module, where the module will concentrate on the kinds of higher-level issues addressed 
in these interviews (e.g., If a signal changes, what happens to the related TFS coefficients?).  
Further, additions will be made to the transient response modules (zero-input response and unit 
impulse response) that plot the time-domain signals addressed in these modules and label their 
transition points. 

V. Concluding Remarks 
In a class like linear systems, students often demonstrate the ability to perform mathematical 
calculations but struggle when it comes to the relationship between those calculations and the 
plots of the signals that those calculations represent.  This is especially true for subjects such as 
Fourier series, where changes in coefficient values influence the shape and character of the 
associated signal.  In this study, the authors sought to better understand this lack of higher-level 
thinking by hosting technical interviews where students solved Fourier series problems and 
relayed their thoughts and methods to the interviewer while they worked.  While many small 
areas of need were identified, general conceptual struggles were identified in broader thematic 
areas such as (a) the definition of the mathematical integral and its connections to signal 
average/behavior, (b) properties of even/odd functions and their relationship to the trigonometric 
basis set, and (c) the links between time shifts/inversion and the resulting phases of the 
contributing coefficients.  Note that these struggles are generally understood by an instructor that 
teaches this subject frequently.  The added value of this work is therefore a more formal means 
to quantify the prevalence of these misconceptions so that the benefits of curricular adjustments 
can be more effectively assessed.  In response to these lessons learned, the authors are making 
changes to this course in the form of lecture and homework updates, including a new online 
learning module that addressed these higher-level subjects directly.  Follow-on exams and 
interviews will determine whether these updates were successful. 
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