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This study investigates how students understand and apply the area under the curve concept and the

integral-area relation in solving introductory physics problems. We interviewed 20 students in the first

semester and 15 students from the same cohort in the second semester of a calculus-based physics course

sequence on several problems involving the area under the curve concept. We found that only a few

students could recognize that the concept of area under the curve was applicable in physics problems.

Even when students could invoke the area under the curve concept, they did not necessarily understand the

relationship between the process of accumulation and the area under a curve, so they failed to apply it to

novel situations. We also found that when presented with several graphs, students had difficulty in

selecting the graph such that the area under the graph corresponded to a given integral, although all of

them could state that ‘‘the integral equaled the area under the curve.’’ The findings in this study are

consistent with those in previous mathematics education research and research in physics education on

students’ use of the area under the curve.

DOI: 10.1103/PhysRevSTPER.7.010112 PACS numbers: 01.50.Zv

I. INTRODUCTION

Many physics problems involve using an integral to
calculate physical quantities from other nonconstant quan-
tities. In most of these problems, the algebraic expressions
of the functions to be integrated are provided or can be
determined from the problem statements, so the integrals
can be computed algebraically. There are also a few prob-
lems in which the integrals must be evaluated graphically
using areas under the curves of the integrands. Many
research studies have investigated students’ problem solv-
ing with algebraic computation of integrals [1–3].
However, there have not been many studies on how stu-
dents use graphical methods to evaluate definite integrals
in physics problems.

In this study, we investigated students’ understanding
and application of the concept of area under the curve to
evaluate definite integrals in several physics problems.
These problems were designed to investigate whether stu-
dents were able to recognize and use the concept, whether
they understood what quantity the area represented, and
whether they could match a definite integral with an area
under a curve.

In the next section, we review some of the studies in
mathematics and physics education research on students’
understanding of integration and the relationship between a
definite integral and an area under a curve. In Sec. III, we
describe the methodology of our research study. We
present our findings in Sec. IV and discuss how these

findings support and extend other studies in mathematics
and physics education research in Sec. V. The limitations
of our study and our future work built on this study will be
discussed in Sec. VI.

II. LITERATURE REVIEW

There have been several studies in mathematics educa-
tion research on students’ understanding of integration and
the relationship between the definite integral and the area
under a curve. Orton [4] investigated students’ understand-
ing of integration, the errors students made when solving
integration problems, and the relationship between a defi-
nite integral and area under a curve. He interviewed 110
British students aged 16 to 22 on several limits and inte-
gration tasks. Many of these tasks involved finding areas
under curves using the Riemann sum method and calculat-
ing the limit of that Riemann sum. Some other tasks asked
students to prove basic properties of integration (such as
the integral of a sum was the sum of integrals) using area
under the curve. Orton found that the majority of students
did not perceive the integral as the limit of a Riemann sum
and talked about such limit as an approximation, not as an
exact answer, although they had no difficulty evaluating a
given Riemann sum. Similar results were found by Artigue
[5], who also investigated students’ understanding of dif-
ferentiation and integration. Artigue found that although
most of the students could perform routine procedures for
finding the area under a curve, rarely could they explain
their procedures. Some students did not even realize why
they were doing it.
Ferrini-Mundy and Graham [6] interviewed a group of

six students in calculus to reveal students’ understanding of
basic concepts of calculus (e.g., function, limit, continuity,
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derivative, and integral) and the interrelationships among
those concepts. They investigated in detail the performance
of one student in the interviews. They found that this
student, like many others in the study, ‘‘interpreted the
integral as a signal to ‘do something.’’ This student per-
ceived the definite integral as ‘‘the area between the graph
of the function and the x-axis,’’ while thinking of the
Riemann sum of the areas of the small rectangles under
the curve as the ‘‘proof’’ for that fact.

There were also studies that investigated students’ abil-
ity to provide an abstract definition of the definite integral
and the concept image students had for it. A concept image
is a cognitive structure in an individual’s mind that is
associated with a specific mathematical concept [7].
Bezuidenhout and Olivier [8] analyzed students’ written
tests and interviews to reveal students’ concept image of
the definite integral. Specifically, they looked at students’
process conception and object conception, which were two
components that formed parts of the concept image that an
individual had of the concept. They found that students
inappropriately applied the limit law that ‘‘the limit of a
sum is the sum of the limits’’ to the Riemann sum, which
revealed their inappropriate process conception of the limit
concept. Students also associated the definite integral with
the area between the curve and the horizontal axis, which
they perceived as being always positive. Therefore, they
took the absolute values of the results of the integrals to
obtain positive results. This erroneous ‘‘area conception’’
of integral was an example of the unsatisfactory concep-
tions which might be due to insufficient abstraction of the
concept images of the integral. In our study, we also
revealed students’ misconception about the integral-area
relation when they attempted to select the graph from
among several graphs that corresponded to a predeter-
mined integral representing a physical quantity.

Rasslan and Tall [9] also investigated the definition and
images of the definite integral held by high school students
in the United Kingdom. They found that ‘‘the majority do
not write meaningfully about the definition of definite
integral, and have difficulty interpreting problems calcu-
lating areas and definite integrals in wider contexts.’’ They
suggested strategies for teaching the definite integral con-
cept. The strategy was to introduce the concept as ‘‘cases
[that] extended the students’ previous experience’’ and let
the students experience it in use through a variety of
examples covering a wide contextual range. Also on the
topic of students’ definition and image of the definite
integral is the work of Grundmeier et al. [10]. They sur-
veyed 52 students leaving a calculus class that covered the
theory and techniques of integration. The survey was de-
signed to explore students’ ability to define the definite
integral in words and symbols, to interpret and represent an
integral graphically, to evaluate integrals, and to recognize
the use of integrals in the real world. They found that
students’ knowledge of the definition of the integral did

not affect their ability to perform routine calculation on the
integrals. They also found that students could ‘‘perform
integration as a procedure with limited understanding that
they are finding the area under the curve and that this area
is being found as a limit of estimations for that area.’’
Mahir [11] investigated the conceptual and procedural

knowledge of 62 students who had successfully completed
a one-year calculus course. These students were asked to
solve five calculus problems relating the concepts of inte-
gral, integral-area relation, integral as a sum of areas, and
the fundamental theorem of calculus. The first two prob-
lems (1 and 2) could be solved using integral formulas and
techniques, so these problems could evaluate students’
procedural knowledge. The next two problems (3 and 4)
could be solved by using either the integral-area relation or
symbolic integral techniques. The last problem (problem 5)
was more complicated and required students to combine
many concepts, so it served to evaluate students’ concep-
tual knowledge. Mahir found that the students in his study
did not have satisfactory conceptual understanding of the
concepts being tested. He also concluded that the students
following the conceptual approach also performed satis-
factorily on procedural calculations and had a higher suc-
cess rate than the students following the procedural
approach. He suggested that concept-based instruction
might help to improve students’ conceptual understanding
in calculus. This suggestion was supported by the study of
Chapell and Killpatrick [12] who found that ‘‘students
exposed to the concept-based learning environment scored
significantly higher than the students in procedural-based
environment on assessment that measures conceptual
understanding as well as procedural skills.’’
All of the research mentioned above indicates that stu-

dents who had taken calculus courses did not have satis-
factory conceptual understanding of the integral concept
and the integral-area relation although they might be very
fluent in performing symbolic integral techniques or in
calculating the area under a curve. This lack in conceptual
understanding of the integral and the integral-area relation
will become a stumbling block when students attempt to
apply the area under the curve concept in real world prob-
lems, such as physics problems. Building on these previous
studies in mathematics education, our study focuses on
exploring the difficulties that students who have success-
fully completed integral calculus courses encounter when
applying the area under the curve concept in physics
problems. Specifically, we investigate whether students in
calculus-based physics courses could recognize the appli-
cation of the area under the curve in physics problems,
whether they understood what quantity the area under the
curve represented, and whether they could match a definite
integral with the corresponding area under the curve when
provided with several curves.
Thompson and Silverman [13] pointed out that for stu-

dents to perceive the area under a curve as representing a

DONG-HAI NGUYEN AND N. SANJAY REBELLO PHYS. REV. ST PHYS. EDUC. RES. 7, 010112 (2011)

010112-2



quantity other than area (e.g., velocity, work), it was im-
portant that students considered the quantity being accu-
mulated as a sum of infinitesimal elements that were
formed multiplicatively. Thompson and Silverman pro-
posed the accumulation model in which integration meant
accumulating the bits that were made of two multiplicative
quantities. This model emphasized the two ‘‘layers’’ of
integration: the multiplicative layer when the bits were
formed and the accumulating layer when the bits were
accumulated.

Sealey [14] also emphasized the importance of under-
standing the structure of the integral with the ability to
apply the area under the curve in physics problems. She
investigated students’ problem solving on ‘‘real world
problems’’ involving integration in a calculus class. The
‘‘real world problems’’ in this study were physics problems
in which physical quantities were calculated using integra-
tion. She found that students might be proficient in dealing
with area under a curve, but they might not be able to relate
such an area to the structure of a Riemann sum. She
concluded that the area under the curve method could be
a powerful tool to evaluate a definite integral only when
students understood the structure of the definite integral.

In our study, we found evidence of students’ failure in
interpreting the meaning of the area under the curve when
they did not perceive it as a Riemann sum and did not
understand the structure of the Riemann sum. The hints
that we provided to help students to recognize the use of
the area under the curve and to interpret its meaning in
physics problems were based on the structure of the
Riemann sum which was consistent with the suggestion
of Thompson and Silverman and Sealey.

There have been a few studies in physics education
research that focus on how students apply the area under
a curve method in evaluating integrals in physics problems.
McDermott et al. [15] investigated students’ difficulties in
connecting graphs and physics in the context of kinemat-
ics. They identified two categories of difficulty students
had with graphs. First, students had difficulties in connect-
ing graphs to physics concepts, including discriminating
between the slope and height of a graph, interpreting
changes in height and changes in slope, relating one type
of graph to another, matching narrative information with
relevant features of a graph, and interpreting the area under
a graph. Second, students had difficulties in connecting
graphs to the real world, including representing continuous
motion by a continuous line, separating the shape of a
graph from the path of the motion, representing a negative
velocity on a ‘‘v vs t’’ graph, representing constant accel-
eration on a ‘‘a vs t’’ graph, and distinguishing among
different types of motion graphs.

In a problem involving finding displacement from a
graph of ‘‘v vs t,’’ students had to find the area under the
curve by counting the number of squares bounded by
the curve and the v ¼ 0 axis and then multiplying it by

the displacement that each square represented. They found
that most of the difficulties students had were directly
related to their ‘‘inability to visualize the motion depicted
by the velocity versus time graph’’ ([15], p. 506). Students
did not knowwhich square they should include in the ‘‘area
under the curve,’’ so they counted all of the squares from
under the curve all the way to the bottom line of the grid
where the horizontal axis was labeled. That led to students’
difficulties in distinguishing positive and negative areas, as
well as associating them with displacement in the positive
and negative direction, respectively.
More recently, Pollock et al. [16] investigated students’

understanding of the physics and mathematics of process
variables in P-V diagrams in thermodynamics. On a ques-
tion asking students to compare the work done by a gas
taking two different paths on the P-V diagram, they found
that successful students were those who recognized that
work was

R
PdV and that this integral equaled the area

under the path.
These studies investigated students’ application of the

area under the curve in physics problems but were limited
on the topics (i.e., the quantities that were calculated using
the area under the curve). There have been no studies in
physics education on how students related an integral and
an area under the curve when there were several graphs
provided. In our study, we investigate students’ application
of the area under the curve in physics problems covering a
broader range of topics (e.g., work-energy, electric field,
resistance, capacitance, electric current) and complexity,
and also investigate how students relate an integral and an
area under the curve when several graphs are provided.
Specifically, we examine the following research questions:
RQ1: How did students in our study recognize the use of

area under the curve in physics problems?
RQ2: How did students in our study understand what

quantity was being accumulated when calculating the area
under a curve?
RQ3: How did students in our study understand the

relationship between a definite integral and the area under
a curve?
In the next section, we will describe the format of our

interviews as well as the rationale of the interview
problems.

III. METHODOLOGY

A. Interviews

In the spring semester of 2009, 20 students were ran-
domly selected from a pool of 102 volunteers enrolled in a
first-semester calculus-based physics course (which we
call Engineering Physics 1 or EP1) to participate in our
study in mechanics. Most of these students were freshmen
or sophomore engineering majors. Among these 20 stu-
dents, there were 13 males and 7 females.
Each student was interviewed four times during the

semester (interviews 1–4). The main reason that we chose
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this methodology was to gain deep insights into how
students solve the interview problems, what difficulties
they encounter, and what hints and scaffolding might
help them overcome these difficulties. We call these inter-
views teaching-learning interviews [17]. This type of inter-
view is different from the more commonly used clinical
interview after Piaget [18,19]. While the focus of
clinical interviews is to investigate the state of student
knowledge—what people think—the main purpose of
teaching-learning interviews is to investigate the process
of knowledge construction—how people think and how
they respond to prompts and hints from the interviewer.
Since the purpose of our research was to investigate how
students applied the area under the curve concept when
solving physics problems, the teaching-learning interview
was an appropriate methodology for our study.

Each interview occurred within two weeks after students
had completed an exam in their physics course. The topics
covered in the interviews were those that had been tested in
the most recent exams. The topics were one-dimensional
kinematics in interview 1, work and energy without fric-
tion in interview 2, work and energy with friction in inter-
view 3, and rotational energy with friction in interview 4.
In interview 1, students were asked to solve two problems:
one from their recent exam and an isomorphic problem in
which part of the information was given as a graph. In each
of the interviews 2, 3, and 4, students solved three prob-
lems: an original problem, a graphical problem, and an
algebraic problem. The original problemwas selected from
the most recent exam and was intended to prepare students
with the physics concepts and principles used in the inter-
view while the graphical and algebraic problems were
modified versions of the original problem in which part
of the information was provided as a graph or an algebraic
expression of a function. In this paper, we focus our dis-
cussion on the graphical problem from interviews 2–4
because those problems involve calculating an integral
using the area under the curve method.

In a related study, we investigated the interaction effect
between graphical and algebraic representations [20]. For
this purpose, approximately half of the participants in each
interview were given the graphical problem before the
algebraic problem (the G-A sequence) while the other
half were given the algebraic problem before the graphical
problem (the A-G sequence). We found that in both cases,
better performance was observed in the problem that came
later in the sequence, regardless of the representation—
graphical or algebraic. This result indicated that students’
performance on the second problem in the sequence was
positively affected by the first problem. In this paper, we
disregard this effect by only investigating those students
who did the graphical problem first, i.e., followed the
G-A sequence. The number of students following the
G-A sequence in each of the interviews is presented in
Table I.

In the fall semester of 2009, 15 students from among the
spring 2009 interviewees, who were enrolled in a second-
semester calculus-based physics course (Engineering
Physics 2 or EP2) at that time, agreed to continue partic-
ipating in our study on electricity and magnetism. Among
these 15 students, there were 9 males and 6 females. Each
student went through another sequence of four interviews
(interviews 5–8) during the semester. The format of these
interviews was similar to that of the spring interviews,
except that there were four to five problems in each inter-
view. These problems included one problem with constant
quantities and other problems with nonconstant quantities
whose information was provided as graphs or algebraic
expressions of functions. Each graph problem in the fall
interviews contained three to four graphs of related quan-
tities. All students were given the problems in the same
order in all interviews. The topics of each interview were
charge distribution and electric field in interview 5, resist-
ance and capacitance in interview 6, current density and
Ampere’s law in interview 7, and RLC circuit in inter-
view 8. We will only discuss the graphical problems from
interviews 5, 6, and 7 because these problems involved
matching a definite integral with an area under a curve.
All of the interviews in both semesters were conducted

by the first author of this paper. Students were asked to
think aloud as they solved the problems in our interviews.
Verbal hints were given by the interviewer when students
made a mistake or were on the wrong approach to the
correct answer.

B. Rationale of the interview problems

Our interview problems were designed to investigate
students’ application of the area under the curve concept
in calculating a physical quantity other than area. In the
spring 2009 interviews, our problems were designed to
answer the first two research questions:
RQ1: How did students in our study recognize the use of

area under the curve in physics problems?
RQ2: How did students in our study understand what

quantity was being accumulated when calculating the area
under a curve?
The gun problem (interview 2) and the barrel problem

(interview 3) were simple problems involving the area
under the curve. Prior to our interviews, students had
learned in the lecture that the work done by a force equaled
the area under the curve of force versus displacement. In

TABLE I. Number of students following the G-A sequence in
each interview.

Interview Number of students

2 11

3 9

4 9
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the gun and the barrel problems, students were provided
with graphs of force versus linear displacement and they
had to calculate the work done by a nonconstant force, so
they only needed to recall the knowledge learned in the
lecture. An interview episode in which the student was able
to calculate the work from the graph of force in interview 2
is presented in Appendix A 1. For students who were not
able to recall this knowledge, the interviewer would pro-
vide hints to help students recognize the use of the area
under the curve in the problems. The set of hints that was
used frequently to help students in the gun and the barrel
problems included questions that led students to think
about the multiplicative structure of the formula for the
work and the area. Work was the product of force and
displacement, and unit of work was the product of units of
force and displacement. Then students were asked to think
about how such a product could be obtained from the graph
(i.e., multiplying the quantities on the vertical and hori-
zontal axes, which essentially yielded the area). A typical
interview episode in which the student was able to calcu-
late the work after this set of hints was provided is pre-
sented in Appendix A 2. Another episode in which the
student was unable to correctly respond to these hints and
needed detailed guidance from the interviewer to calculate
the work in interview 2 is presented in Appendix A 3.

The sphere problem (interview 4) was more compli-
cated. This problem provided a graph of force versus
angular displacement instead of linear displacement, so
finding the area under the curve meant accumulating the
product of force and angle, which did not yield the total
work. Students had to convert angle to distance along the
circular track by multiplying the angle by the radius of
the track. Overall, this meant that students had to multiply
the area under the curve by the radius of the track. So, this
problem required an understanding of what quantity was
being accumulated when computing the area under the
curve. Therefore, it could help us determine whether stu-
dents understood the relationship between work and area
under the curve or just applied it as a rule. Once the student
had recognized the use of the area under the curve in
finding the work, the interviewer let the student calculate
the area under the curve. If the student claimed that the area
they obtained was the value of work, the interviewer would
provide hints to help them recognize that it was in fact not
the work yet and that they needed to multiply it with the
radius of the track to calculate the correct value of work.
The hints that were provided to the students asked them to
focus on the unit of the area they calculated and compare
this with the units of work. They were also provided hints
that asked them to think about the relation between the
angle and circumference of a full circle. Interview episodes
of students who spontaneously recognized, recognized
after hints, and recognized after detailed guidance that
the area was not yet the value of work are presented in
Appendices A 4–A 6, respectively.

As students proceeded through our interviews, they had
become familiar with the use of area under the curve in
physics problems, although as our results show they did not
completely understand how to apply this knowledge in
unfamiliar situations. Another important limitation of the
interview problems chosen in spring 2009 was that, in all
of these problems, students had one integral and were
provided with one graph (i.e., the graph of the integrand
versus the variable of integration); therefore, most students
then knew that the integral equaled the area under the
curve. If there had been more than one graph, we would
have been able to investigate whether students knew under
which curve to find the area. In order to choose from
several graphs the graph corresponding to a predetermined
integral, students had to understand the relation between
integral and the area under the curve. So our problems in
the fall 2009 interviews were designed to help us answer
the third research question:
RQ3: How frequently did students in our study under-

stand the relationship between a definite integral and area
under a curve?
In each of these problems, students had to calculate a

physical quantity (e.g., electric field, resistance, electric
current) by evaluating a definite integral. Explicit expres-
sion of the integrand was neither given nor derived. Instead,
students were provided with several graphs of related quan-
tities. Students had to choose the graph on which the area
under the curve equaled the integral at hand. This could help
us determine whether students understood how a definite
integral was related to area under a curve.

C. Data analysis

All interviews were video- and audiotaped and verbatim
transcripts were created. Students’ worksheets as well as
interviewer’s field notes were also collected. We first ex-
amined the field notes to identify interesting points in each
interview and then referred to the student’s worksheet and
transcript for detail on what students wrote and said. We
studied the transcripts of the interviews and looked for the
answers to the following questions:
Did the student spontaneously recognize the use of the

area under the curve in solving the problems?
If not, did the student recognize it after a few hints or

after detailed guidance from the interviewer?
What hints were provided by the interviewer to help

students recognize the use of the area under the curve?
We established an interrater reliability of 89% between

two independent raters.
In the next section, we will present our findings from the

interviews and discuss how these findings help us answer
our research questions. Wewill use pseudonyms S1–S20 to
identify the students. We used the same pseudonym to refer
to the same individual in both semesters, i.e., student S13
in the spring 2009 interviews was the same student S13 in
the fall 2009 interviews.

STUDENTS’ UNDERSTANDING AND APPLICATION . . . PHYS. REV. ST PHYS. EDUC. RES. 7, 010112 (2011)

010112-5



IV. RESULTS

A. Calculating work from a graph of force
versus position

The graphical problems of interviews 2, 3, and 4 in-
volved calculating the work done by a nonconstant force
from a graph of force versus linear or angular position.
Students learned from the lecture that the work done by a
force equaled the area under the curve of force versus
position. However, there was no homework or exam prob-
lem in which this knowledge was required, so students did
not have a chance to practice finding work from a graph of
force prior to our interviews.

We found that in interviews 2 and 3, most of the students
attempted to use the equation of work done by a constant
force W ¼ F � d or that of work done by the spring force
W ¼ 1

2 kx
2 to calculate work. Upon being asked to think of

another strategy to find work, only a few students were able
to recognize that they could find the area under the curve of
force. Other students only recognized that the work
equaled the area after hints or detailed guidance from the
interviewer. In interview 4, students had become familiar
with the task, so most of them spontaneously stated that
work equaled area under the curve. However, the graph
provided in interview 4 was a graph of force versus angular
displacement instead of linear displacement, so the area
under the curve did not yield work. To find the work
done by frictional force in this problem, students had to
find the area under the curve and multiply it by the radius
of the circular track. This procedure was equivalent to

calculating the integral R
R�=2
0 Fð�Þd� or

R�R=2
0 Fð�Þds,

where ds was an infinitesimal segment of length along
the circular track.

We classified students’ performance into three levels:
(i) getting the correct answer spontaneously, i.e., the

student got the correct answer without any hints from the
interviewer,
(ii) getting the correct answer after hints were provided

by the interviewer, i.e., the student was able to use the area
under the curve appropriately by following the hints pro-
vided by the interviewer,
(iii) getting the correct answer after detailed guidance

from the interviewer, i.e., the student failed to follow the
hints provided by the interviewer and needed to be told
explicitly how to use the area under the curve.
The major difference between a student who got the

correct answer after hints were provided and after detailed
guidance was that the former student was able to respond
correctly to the hints and obtained the correct answer by
himself or herself, while the latter student was unable to
respond correctly to the hints and needed to be told ex-
plicitly about how to arrive at the correct answer.
Examples of students who got the correct answer spon-

taneously, after a few hints, and after detailed guidance in
interview 2 are presented in Appendices A 1–A 3 respec-
tively. The problem in interview 3 was similar to that in
interview 2, so we do not present examples for interview 3.
Examples of students who recognize the need for the radius
factor in the sphere problem (interview 4) spontaneously,
after a few hints, and after detailed guidance are also
presented in Appendices A 4–A 6 respectively.
The gun problem (Fig. 1).—This problem involved find-

ing the work done by a spring force. There were two
possible strategies for calculating the work done by the
spring force in this problem. First, one could find the area
under the curve of force versus displacement graph.

FIG. 1. The gun problem (interview 2).

DONG-HAI NGUYEN AND N. SANJAY REBELLO PHYS. REV. ST PHYS. EDUC. RES. 7, 010112 (2011)

010112-6



Second, one could find the spring constant k. Because of
the linear dependence of spring force and displacement in
this problem, the spring constant k equaled the magnitude
of the slope of the line. Then the work done by the spring
force could be found from the equationW ¼ 1

2 kx
2, where x

was the maximum spring compression.
Only one out of 11 students spontaneously stated that

work equaled area under the curve of the force versus
displacement graph and used the first strategy to calculate
work. The other 10 students followed the second strategy
and also obtained the correct value of work. When these
students were asked to think of another strategy to find the
work done by the spring force, six students could recognize
that work equaled area under the curve of force after hints.
The other four students stated that the area might have a
physical meaning but were not able to recall what the
meaning was until being explicitly told by the interviewer.

The barrel problem (Fig. 2).—This problem involved
finding the work done by the resistance force of a liquid.
This work might be found by either finding the area under
the curve of force or treating the liquid as a spring whose
spring constant was the slope of the line. Only three out of
nine students spontaneously stated that work equaled area
under the line. Three other students invoked the equation
for work done by friction force on a horizontal floor W ¼
F � d ¼ �mgd in which the coefficient of friction � was
the slope of the curve. Another student stated that the slope
of the curve was the value of work. The remaining two
students attempted to use the equationW ¼ F � d, where F
was the value of force at the maximum point on the graph.
Of the six students who did not spontaneously calculate
area under the curve, three recognized that work could be
calculated using area under the curve after hints, while the
other three were unable to recognize it until being told
explicitly by the interviewer.

The sphere problem (Fig. 3).—This problem involved
finding the work done by the rolling friction force on a
circular track. This could be done by finding the area under
the curve and multiplying this area by the radius of the
track. Only one out of nine students spontaneously set up
the correct calculation and got the correct value of the
work. Five other students spontaneously stated that
the area under the curve was the value of work. Of these
five students, upon being told that the area itself was not the
value of work, only two students recognized the need for
the radius factor while the other three did not know what
was missing and needed detailed guidance from the inter-
viewer on both recognizing the use of area under the curve
and the radius factor.
Table II summarizes the number of students (out of the

total) who obtained the correct value of work using area
under the curve without hints, with hints, and with detailed
guidance.
From Table II, we see that only a few students (S9, S10,

S15, S16) could spontaneously recognize the use of area
under the curve in calculating work when the graph of
force versus displacement was provided. Student S16
worked on the algebraic problem before the graphical
problem in interview 4 so he was not included in the
analysis of the sphere problem. In this problem, students
S10 and S15 spontaneously stated that the work done by
the rolling friction force was the area under the curve of
force versus angle. One of them (S10) could recognize the
need for the radius factor after being told that the area itself
was not the value of work. The other student (S15) only
obtained the correct value of work after detailed guidance
from the interviewer. Student S9 was the only one who
could calculate the correct value of work in the sphere
problem without hints. However, he completed the graph
problem after the algebraic problem in interviews 2 and 3,

FIG. 2 (color online). The barrel problem (interview 3).
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so he was not included in the analysis of the gun and the
barrel problems. Therefore, we did not know whether or
not he was able to recognize the use of area under the curve
in those problems.

We answer our first two research questions as follows.
RQ1: How did students in our study recognize the use of

area under the curve in physics problems?
The majority of students in our interviews did not spon-

taneously recognize the use of area under the curve in
calculating work from the graph of force. There were two
possible explanations: (i) students were not familiar with
the method, and (ii) students held strong preferences for
the algebraic method. The fact that more students were
able to recognize that work equaled area under the curve as
they progressed through the interviews suggests that stu-
dents gained familiarity with the method. Some students,
while talking with the interviewer after the interviews,
stated that they had never seen a problem using area under
the curve in their homework or on exams. On the other
hand, students also expressed an inclination to an algebraic
approach even when a graph was provided. They attempted
to use prederived equations for work and just used the
graph to collect data on the values of the spring constant
or the coefficient of friction. Some students explicitly told
the interviewer that they hated problems with graphs and
preferred working with equations. These facts supported
the second explanation.

RQ2: How did students in our study understand what
quantity was being accumulated when calculating the area
under a curve?
In the gun and barrel problems, the area under the curve

itself was the value of work. So when a student recognized
that work equaled area under the curve, we did not know
whether he understood how work was accumulated when
calculating the area or if he had just applied what he was
taught in the lecture. There were four students in inter-
view 2 who stated that the area had some meaning but they
were unable to explain the meaning. In addition, there were
also three students in interview 3 who stated that the slope
of the line was the coefficient of friction. These were
evidence that these students did not understand what quan-
tity the slope and the area represented.
In the sphere problem, finding the area meant accumu-

lating the product of force and angle, which was not
work. Six out of nine students spontaneously stated
that work equaled the area under the curve, but only
one of them spontaneously recognized the need for
the radius factor. This was further evidence that
although students could invoke the statement that
‘‘work equals the area under the curve of force versus
displacement,’’ they might not understand what quantity
was being accumulated when calculating such an area.
Therefore, they failed to apply that knowledge in novel
situations.

TABLE II. Students who obtained work using the area under the curve without hints, with hints, and with detailed guidance.

Problem Correct without hints Correct with hints Correct with detailed guidance

Gun 1=11 (S16) 6=11 (S1, S2, S4, S8, S19, S14) 4=11 (S3, S7, S11, S12)

Barrel 3=9 (S10, S15, S16) 3=9 (S2, S6, S12) 3=9 (S3, S11, S13)

Sphere 1=9 (S9) 2=9 (S6, S10) 6=9 (S5, S17, S18, S13, S15, S20)

FIG. 3 (color online). The sphere problem (interview 4).
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B. Matching a definite integral with an area
under a curve

The graphical problems of interviews 5, 6, and 7 in-
volved evaluating definite integrals by calculating the areas
under the curves. All 15 students (S1–S15) participating in
these interviews solved the algebraic problems prior to the
graphical problems. Each of the graphical problems pro-
vided three or four graphs describing the relation between
the related quantities in the problem. Students had to select
among these graphs the one in which the area under the
curve was the value of the integral they encountered when
solving the problem.

We found that most of the students preferred computing
the integral algebraically to evaluating it graphically.
Students attempted to find the expressions of the functions
from the given graphs to plug into the integrals and com-
puted them algebraically. Students considered evaluating
the integrals using area under the curve only when the
integral was too complicated to be computed algebraically
or when students were unable to find the explicit expres-
sions of the functions. About half of the students in each
interview were able to select the appropriate graph to find
area (i.e., the graph of the integrand), while others needed

hints on this task. The hint provided to the students in this
situation was to draw a graph of an arbitrary function fðxÞ
and have students label the axes of the graph such that the
area under the curve from a to b equaled the integralR
b
a fðxÞdx. This exercise, which directed students’ atten-

tion to the relation between the integrand and the function
being plotted, helped most of the students recognize the
correct graph to find the area. Interview episodes in which
students were able to select the correct graph spontane-
ously and after hints are presented in Appendices A 7 and
A 8, respectively.
The arch problem (Fig. 4).—Students were given the

graphs of ‘‘�ð�Þ vs �,’’ ‘‘�ð�Þ sin� vs �,’’ and ‘‘�ð�Þ cos�
vs �,’’ and had to evaluate the integral

R�=2
��=2 �ð�Þ cos�d�.

The value of this integral equaled the area under the curve
of ‘‘�ð�Þ cos� vs �’’ (i.e., the second graph in the problem
statement) from ��=2 to �=2. One out of 15 students
attempted to find the expression of �ð�Þ to compute the
integral algebraically. Four other students did not know
what to do with the graphs. Upon being provided hints on
the relation between a definite integral and an area under a
curve, two of them were able to choose the correct graph to
find area while the other two students needed further hints

FIG. 4 (color online). The arch problem (interview 5).
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to recognize the correct graph. Out of the 10 students who
spontaneously recognized the relation between integral
and area under a curve, four students were able to choose
the correct graph. The remaining six students initially
chose an incorrect graph and needed hints to recognize
the correct one. The errors these students made included:
finding area under the curve of ‘‘�ð�Þ vs �’’ (S11, S14, and
S15) because they were ‘‘integrating �ð�Þ,’’ multiplying
the area under the curve of ‘‘�ð�Þ vs �’’ by cos� (S6),
choosing the graph of ‘‘�ð�Þ cos� vs �’’ because ‘‘its area
was easy to calculate’’ (S12), and relating the area with the
antiderivative of the integrand (S13). The last error will be
discussed as a misconception in Sec. IVC.

The conductor problem (Fig. 5).—Students were given
the graphs of ‘‘�ðxÞ vs x.’’ ‘‘AðxÞ vs x,’’ ‘‘�ðxÞ � AðxÞ vs x,’’
and ‘‘�ðxÞAðxÞ vs x,’’ and had to evaluate the integral R ¼
R
2
0
�ðxÞ
AðxÞ dx, where �ðxÞ and AðxÞ were the resistivity and

cross-sectional area of the conductor at position x. The
value of this integral equaled the area under the curve of

‘‘�ðxÞAðxÞ vs x’’ (i.e., the fourth graph in the problem statement)

from 0.0 to 2.0 m. Three out of 15 students were able to
choose the correct graph. Among the other 12 students,
eight attempted to find the expression of �ðxÞ in order to
compute the integral algebraically. The expression of the
area function AðxÞ had been derived in the algebraic prob-
lem which came before this problem. The integral obtained
was too complicated to be computed algebraically, so these
students considered evaluating the integral using area
under the curve and were able to choose the correct graph.
The remaining four students needed hints to recognize the
correct graph to find area. The errors these students made
could be attributed to students’ misconceptions about basic
properties of integration and the relation between an inte-
gral and the area under a curve. These misconceptions will
be discussed in detail in Sec. IVC.
The current problem (Fig. 6).—The equation for the

current in this problem was I ¼ 2�
R
2
0 jðrÞrdr. Students

were given the graphs of ‘‘jðrÞ vs r,’’ ‘‘rjðrÞ vs r,’’ ‘‘r2jðrÞ
vs r,’’ and ‘‘jðrÞr vs r.’’ The value of the integral in the

current equation equaled the area under the curve of rjðrÞ

FIG. 5 (color online). The conductor problem (interview 6).
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vs r (i.e., the second graph in the problem statement) from
0 to 2 cm. Nine out of 15 students were able to choose the
correct graph. Four other students chose the ‘‘jðrÞ vs r’’
graph for the reason that the current density jðrÞ was being
integrated. The remaining two students chose the ‘‘jðrÞr vs

r’’ graph because its area was straightforward to calculate.
In summary, almost all of the students indicated knowl-

edge that an integral equaled the area under a curve.
However, when provided with several graphs, students
had difficulties identifying the graph under which the
area was the value of a certain integral. There were four
common errors that students made in selecting the graph:

(i) relating only one part of the integrand with the

function being plotted [e.g., equating
R�=2
��=2 �ð�Þ cos�d�

with the area under the curve of ‘‘�ð�Þ vs �’’ or R2
0 jðrÞrdr

with area under the curve of ‘‘jðrÞ vs r’’];
(ii) relating the area with the integrand (e.g., equating

the area under the curve of ‘‘�ðxÞ vs x’’ with the value of
the function �ðxÞ in the integral);

(iii) identifying the graph to find the area based on the
simplicity of the area calculation (e.g., choosing a graph
because the area calculation was straightforward);

(iv) applying incorrect properties of integration (e.g.,
equating the integral of a quotient with the quotient of
integrals).

In Sec. IVC, we will discuss students’ misconceptions
about integration and the area under a curve.

C. Students’ misconceptions about the integral
and the area under a curve

Our interviews also revealed some students’ misconcep-
tions about basic properties of integrals and the relation-
ship between the integrals and the area under a curve.
These misconceptions were the integral equals the area
under the curve of the antiderivative of the integrand,
integral of a product or quotient equals sum or quotient
of integrals, and integrand equals area under the curve. We
will discuss each of these misconceptions below.
Area under a curve equals the antiderivative of the

integrand—In the arch problem (interview 5), the integral

was
R�=2
��=2 �ð�Þ cos�d�, which equaled the area under the

curve of ‘‘�ð�Þ cos� vs �’’ from��=2 to�=2. Student S13
chose the graph of ‘‘�ð�Þ sin� vs �’’] because she inte-
grated cos� before finding the area. The transcript of this
interview episode is presented in Appendix A 9.
The area under a curve equals the integrand.—In the

conductor problem (interview 6), the integral was
R
2
0
�ðxÞ
AðxÞ dx, which equaled the area under the curve of ‘‘�ðxÞAðxÞ

vs x’’ from 0.0 to 2.0 m. Student S8 calculated the areas
under the curves of ‘‘�ðxÞ vs x’’ and ‘‘AðxÞ vs x’’ and
plugged those areas into �ðxÞ and AðxÞ in the integral.
Similarly, in the current problem (interview 7),
student S3 calculated the area under the curve of ‘‘jðxÞ
vs r’’ and plugged that area into jðrÞ in the integralR
2
0 jðrÞrdr. These errors suggested that these students

FIG. 6 (color online). The current problem (interview 7).
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perceived the area under a curve as the value of the
integrand rather than the value of the integral. The tran-
script of the interview episode in which this type of mis-
conception occurred is presented in Appendix A 10.

Integral of a product or quotient equaled a sum or
quotient of integrals.—In the conductor problem (inter-
view 6), student S1 found the explicit expression of �ðxÞ
from the ‘‘�ðxÞ vs x’’ graph and calculated the integral

using the equation
R
2
0
�ðxÞ
AðxÞ dx ¼ R

2
0 �ðxÞdxþ

R
2
0

dx
AðxÞ .

Students S6 and S8 attempted to use the equation
R
2
0
�ðxÞ
AðxÞ dx ¼

R
2

0
�ðxÞdxR

2

0
AðxÞdx and calculated the quotient of the

areas under the curves of ‘‘�ðxÞ vs x’’ and ‘‘AðxÞ vs x.’’
The transcript of the interview episode in which this type of
misconception occurred is presented in Appendix A 11.

In summary, we found evidence that students might not
completely understand the concept that ‘‘the integral
equals the area under the curve’’ although they might be
able to invoke it during problem solving. We also found
evidence that some students held misconceptions about
basic properties of integrals.

We answer our last research question—RQ3: How did
students understand the relationship between a definite
integral and area under a curve?

Almost all of the students indicated knowledge of ‘‘the
integral equaled the area under the curve,’’ but only half of
them (four students in interview 5, eight in interview 6, and
nine in interview 7) were able to select the graph corre-
sponding to a predetermined integral when several graphs
were present. The errors other students made—choosing a
graph based on part of the integrand or on the simplicity of
the area calculation—indicated that these students did not
completely understand the relationship between a definite
integral and area under a curve.

V. DISCUSSION

In this study, we found that the majority of the students
did not spontaneously invoke the area under the curve
concept during physics problem solving. This might be
attributed to students’ unfamiliarity with the graphical
methods as well as their strong inclination toward algebraic
methods in solving physics problems. Even when students
invoked the area under the curve concept in a physics
problem, there was evidence that they might not under-
stand what physical quantity the area represented. We also
found that when provided with several graphs, many stu-
dents were unable to choose the graph on which the area
under the curve equaled a predetermined integral, even
though they could state that the integral equaled the area
under the curve.

We will now discuss how our findings are consistent
with other studies in mathematics and physics education
research on students’ use of the area under the curve
concept.

Students’ difficulties with the area under the curve con-
cept in the physics context of our study are similar to
those previously found in mathematics context. We
found that most of the students used area under the curve
to find work from a graph of force versus displacement,
but they might not understand why the work was equal
to the area, so they failed to recognize that the area
under the curve in the sphere problem was not yet the
value of work. This is similar to what Artigue concluded
in his study [5]: most students could perform routine
procedures of finding area under the curve but rarely
could they explain why these procedures were
necessary.
Thompson and Silverman [13] suggested that for stu-

dents to perceive the area under the curve as representing a
quantity other than area (in our case it was work),
students must be able to see the integration process as an
accumulation of the incremental bits that were formed
multiplicatively. The hints we provided to help students
recognize the use of the area under the curve concept in our
interviews aimed at this goal. We asked students questions
that directed their attention to the fact that the total work
was the accumulation of the product of force and distance
over small increments, which was essentially the area
under the curve on the graph of force versus linear
displacement.
Sealey [14] concluded that the area under the curve

method could be a powerful tool to evaluate a definite
integral only when students understood the structure of
the definite integral. Our study showed the extent to which
students struggled with choosing an area that equaled a
definite integral when they did not view the integral as
having two components: the integrand and the infinitesimal
term dx or dr. About half of the students in our interviews
chose the incorrect graph because their choice was based
on the wrong clues (i.e., based on part of the integrand, the
antiderivative of the integrand, or the ease of finding the
area). The hints that asked students to label a graph of an
arbitrary function fðxÞ such that the area under the curve
equaled the integral

R
b
a fðxÞdx directed students’ attention

to the two components of an integral and helped them
recognize that the integrand was the clue for choosing
the correct graph.
McDermott et al. [15] studied how students used area

under the curve in kinematics. Our study investigated
students’ use of area under the curve in many other topics
of introductory physics. We did not have any problems
involving negative area as in the study by McDermott
et al., but we had problems with more than one graph
from which we could investigate how students related a
definite integral with an area under a curve.

VI. LIMITATIONS AND FUTURE WORK

The research methodology used in this study was the
individual interview. This method had an advantage in that
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it allowed us to gain insight into how individual students
interacted with the concept of an integral as area under the
curve. It also allowed us to interview the same students
several times during two semesters, and therefore, we
could track the development of the students through both
of the courses. In spite of the advantages afforded by
individual interviews, the method limited the number of
students participating in the study, and hence, limited the
generalizability of the results.

Our interview problems involved several physics quan-
tities that could be calculated using area under the curve.
However, there was no problem involving negative areas or
areas that had the lower bound other than the fðxÞ ¼ 0 axis
(i.e., the x axis). By ‘‘area under the curve’’ we usually
mean the area bounded by the curve and the fðxÞ ¼ 0
axis. There are problems in which the ‘‘area under the
curve’’ is bounded by the curve and the fðxÞ ¼ �2 line
for instance. Investigating whether students know that
‘‘integral equals area under the curve, but above what?’’
will be an interesting study following the study presented
in this paper.

Based on our interview findings, we plan to develop
tutorial materials to help students understand the ‘‘integral
equals area under the curve’’ relationship and implement
them for all of the students in both EP1 and EP2 courses
(usually around 200þ students each) in future semesters
when the courses are offered to test the effects of those
materials in helping students learn to use the area under the
curve method in physics problem solving.
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APPENDIX A

1. An interview episode in which a student
spontaneously recognized the use of the
area under the curve in interview 2

Interviewer: So what are you trying to calculate?
Student: Spring constant based on the graph . . . which

isn’t necessary actually because W ¼ F � d . . . because I
can just have the work on the ball so I’ll just need to
integrate the graph. Since it’s a triangle I would say 1

2b �
h ¼ W ¼ 100J is work done by the spring.

In this episode, the student recognized that he could find
the work done by the spring force by saying that he could
‘‘integrate the graph’’ and his calculation indicates that he
meant finding the area under the curve of force versus
distance.

2. An interview episode in which a student
recognized the use of the area under the
curve after a few hints in interview 2

Interviewer: So you found x and F to find k to use in
potential energy. But can you think of a way to find
potential energy without knowing k and x?
Student: . . . I’m not sure, that’s the only equation I know

for it.
Interviewer: What is the equation for work?
Student: W ¼ F � d
Interviewer: How are force and distance given on the

graph?
Student: They are plotted on the graph.
Interviewer: Force is plotted on the vertical axis and

distance on the horizontal axis.
Student: Yeah.
Interviewer: So work is the product of these two quan-

tities, which means it is the product of the vertical and
horizontal values. What do you get when you multiply the
horizontal and vertical dimensions of a graph?
Student: I’ll get the area of the graph.
Interviewer: Right, so you know how to find work now.
Student: Yeah . . . area under the curve.
In this episode, the student started out knowing only one

method for calculating the work: using the formula
W ¼ 1

2 kx
2. Being prompted that the work was the product

of force and distance, which were the two dimensions of
the given graph, the student was able to recognize that such
a product was the area of the graph, and therefore, the work
was the area bounded by the curve of force.

3. An interview episode in which a student
recognized the use of the area under the curve

after detailed guidance in interview 2

Interviewer: You found k by finding F and x but there is
another way without knowing x and knowing F. Can you
think of any other method?
Student: I guess the graph tells you.
Interviewer: Ok, how will you do that?
Student: Well, at x ¼ 0:2 then potential energy is 1000.
Interviewer: Not potential energy. The only thing that

tells you is that the force is 1000 N at x ¼ 0:2. Potential
energy is equal to the work done by the spring.
Student: Which is F � d.
Interviewer: Yes, how do you get the force and distance?
Student: This graph tells you the force at different dis-

tance . . . I don’t know.
Interviewer: Force is the vertical axis on the graph, and

distance is the horizontal axis. So how can you find F � d
on the graph?
Student: I have no idea.
Interviewer: Okay, multiplying the vertical and the hori-

zontal axes of the graphs, you’ll get its area. So in this case
work is the area under the curve.
Student: Oh yes.
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In this episode, the interviewer provided similar hints as
in the episode presented in Appendix A 2. However, the
student still could not recognize that the work equaled
the area under the curve until being told explicitly by the
interviewer.

4. An interview episode in which a student
spontaneously recognized the need for the unit

conversion in interview 4

The following episode started after the student had
calculated the area under the curve and got 273 area units.

Student: This is my area under the curve, which is work
done by the force . . . Oh wait, the unit is not right.

Interviewer: What is the unit of that number?
Student: It’s Newton times degree now, but I need Joule.
Interviewer: So what should you do then?
Student: I think I can change it. [drew a unit conversion

table and converted the unit correctly and got 4.76 J]
Interviewer: Yeah, that’s right.
In this episode, the student first claimed that the area

under the curve was the work done by the force. But then
he spontaneously recognized that the unit was not right,
and was able to convert the unit by himself.

5. An interview episode in which a student
recognized the need for the radius factor

after hints in interview 4

The following episode started after the student had
calculated the area under the curve and got 270 area units.

Interviewer: What is the unit of that number?
Student: Umm . . . Newton time degree.
Interviewer: How do you know?
Student: . . . because you’re finding the area multiplying

this [horizontal axis] times this [vertical axis] which is
Newton time degree.

Interviewer: What do you want to calculate?
Student: Work.
Interviewer: What is the unit of work?
Student: It’s Joule, isn’t it?
Interviewer: Yes, but what is a Joule?
Student: Joule is . . . Newton . . . per . . . meter squared.
Interviewer: What is the equation for the work done by a

force?
Student: Work is force time distance.
Interviewer: Right, so what is the unit of work then?
Student: Newton time meter.
Interviewer: But here you have Newton times degree and

you have to convert that to Newton times meter.
Student: How do I find degrees from meter? I’ve never

even heard of going from degree to meters. . .
Interviewer: Howmany degrees are there in a full circle?
Student: 360.
Interviewer: How many meters are there in a full circle?

I mean the circumference.
Student: 2�R . . . So I have . . . 2�R meters

360 degrees

Interviewer: Right, so now you can convert the unit.
Student: [did the unit conversion and got the correct

value of work]
In this episode, the student did not spontaneously

recognize the need for a unit conversion until being
prompted that the unit of the area under the curve
was not the unit of work. The student then did not know
how she could convert the unit because she ‘‘never even
heard of going from degrees to meters.’’ She was, however,
able to respond correctly to the hints provided by the
interviewer and was able to set up the unit conversion
factor.

6. An interview episode in which a student
recognized the need for the radius factor
after detailed guidance in interview 4

The following episode started after the student had
calculated the area under the curve and got 267.5 area
units.
Interviewer: That is right, but what is the unit?
Student: Newton . . . per meter?
Interviewer: You found the area by multiplying the

x-values by the y-values so what is the unit of the area?
Student: . . . per degree?
Interviewer: The y-value is in Newton and the x-value is

in degree and you multiply them so what is the unit?
Student: Newton time degree.
Interviewer: Yes. Newton time degree.
Student: Oh and that equals the work, right?
Interviewer: What is the unit of work?
Student: Umm . . . Newton . . . per meter?
Interviewer: Newton time meter. So how can you con-

vert the unit?
Student: I don’t know because it’s not in radians and if it

was in radians then I would multiply it by 2� or something
like that.
Interviewer: Okay, let’s consider the full circle how

many degrees?
Student: 360.
Interviewer: How many meters are there in a full circle?

I mean the circumference.
Student: 2� or something . . .
Interviewer: 2�R. So 360 degrees are corresponding

to 2�R meters, so what is the unit conversion factor
now?
Student: Umm . . . I’m confused. Why we are talking

about a full circle but we just have a part of a circle?
Interviewer: That is just an example for you to see how a

degree is related to a meter.
Student: R ¼ 1 m so the circumference is 2� meters,

not 1 m.
Interviewer: What I mean is that you can make a fraction

which equals 1 and has the unit of meter per degree.
Student: Umm . . . I don’t know how I can get 1 from

these.
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Interviewer: Okay, 360 degrees are corresponding to
2�R meters, so the fraction is 2�R meters

360 degrees . Now you can do

the unit conversion.
Student: I don’t know how to convert unit though.
Interviewer: Alright, the unit conversion is ð267:5 N�

degreesÞ 2�R meters
360 degrees and you’ll get a number in Newton time

meter, which is Joule. And that’s the value of work.
Student: Okay.
The student in this episode claimed that the area under

the curve was the value of work. He was not able to state
the correct unit of it upon being asked. He seemed to be
completely lost when the interviewer attempted to provide
hints on unit conversion, and needed to be told explicitly
how to convert the unit.

7. An interview episode in which a student
spontaneously selected the correct graph to

find the area in interview 5

The following episode started after the student had set

up the correct integral for the electric field E ¼ 1
4�"0R

�
R�=2
��=2 �ð�Þ cos�d�.
Student: I have this integral and I have the graphs so I

have to use the area under the curve then.
Interviewer: Which curve do you use?
Student: This one. [points at the graph of ‘‘�ð�Þ cos�

vs �’’]
Interviewer: How do you know?
Student: Since I’m integrating �ð�Þ cos�.
Interviewer: Yes, right.
In this episode, the student was able to recognize that he

needed to use the graph of ‘‘�ð�Þ cos� vs �’’ and his
reasoning indicates that he chose the curve based on the
integrand.

8. An interview episode in which a student
selected the correct graph to find the area

after hints in interview 5

The following episode started after the student had set

up the correct integral for the electric field E ¼ 1
4�"0R

�
R�=2
��=2 �ð�Þ cos�d�.
Interviewer: How can you evaluate this integral?
Student: I can find the area under the curve.
Interviewer: Which curve do you use?
Student: I’m integrating � and this graph [points at the

graph of ‘‘�ð�Þ vs �’’] tells me about �.
Interviewer: Other graphs also have �.
Student: So . . . I don’t know which one then.
Interviewer: Okay, now if I have a curve [draw an

arbitrary curve] and I tell you that the area under this curve
from x ¼ a to x ¼ b equals the integral

R
b
a fðxÞdx, can you

label the axes of the graph?
Student: This is fðxÞ [labels the vertical axis] and this is

x [labels the horizontal axis].

Interviewer: Right, but how did you know?
Student: Because the integral equals the area under the

curve.
Interviewer: So do you know which curve to find the

area now?
Student: Well . . . here I have �ð�Þ instead of fðxÞ . . . so I

want to say this graph [points at the graph of ‘‘�ð�Þ vs �’’]
but you told me it’s not right.
Interviewer: What is the integrand in this integral?
Student: Oh . . . I have to integrate cos� too. So I would

say this graph. [points at the graph of ‘‘�ð�Þ cos� vs �’’]
Interviewer: You get it now.
The student in this episode first chose the graph of ‘‘�ð�Þ

vs �’’ because ‘‘it tells me about �.’’ With the hints
provided by the interviewer, he was able to recognize
that he needed to use the graph of ‘‘�ð�Þ cos� vs �’’.

9. An interview episode in which a student
selected the graph to find the area based
on the antiderivative of the integrand in

interview 5

The following episode started after the student had set

up the correct integral for the electric field E ¼ 1
4�"0R

�
R�=2
��=2 �ð�Þ cos�d�.
Interviewer: Okay, so now you have graphs . . .
Student: Yeah, I understand that I have to use these

graphs, I just don’t know how.
Interviewer: And you have your integral. So what is the

relation between an integral and a graph?
Student: It’s the area underneath the curve.
Interviewer: Uh huh, area under the curve. So which

graph do you use to find the area?
Student: I’m hoping this one. [points at the graph of

‘‘�ð�Þ vs. �’’]
Interviewer: Yes, you hope. But you should have a

reason.
Student: No . . . It’s this one. [points at the graph of

‘‘�ð�Þ vs. �’’]
Interviewer: How do you know you should use that

graph?
Student: Um, because if I take the integral of cosine it’s

going to be sine so I need the area under this.
This student was able to recognize that the integral

equals the ‘‘area underneath the curve’’ when provided
hints on the relation between integral and graph.
However, she was not sure which area was corresponding
to the integral. After picking a graph with the ‘‘hope’’ that
it would be the correct one, she was more thoughtful in her
second attempt. Her explanation that the integral of cosine
was sine indicated that she chose the graph based on the
result of integrating the cosine in the integrand. This
evidence suggested that she did not understand the relation
‘‘the integral equals the area underneath the curve’’
although she could invoke it when solving the problem.
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10. An interview episode in which a student
found the area under the curve and used it as
the integrand to find the area in interview 6

The following episode started after the student had set

up the integral for the resistance R ¼ R
2
0
�ðxÞ
AðxÞ dx.

Student: I need to find . . . do the area under this curve . . .
[points at the graph of ‘‘�ðxÞ vs x’’] . . . and this curve . . .
[points at the graph of ‘‘AðxÞ vs x’’]

Interviewer: How do you know?
Student: ‘Cause I need �ðxÞ and AðxÞ in the integral.
Interviewer: So what do you plan to do?
Student: I need the areas to plug in the integral.
Interviewer: No, the area itself is already the integral.
Student: Oh . . . okay, so I will use this graph then.

[points at the graph of ‘‘�ðxÞAðxÞ vs x’’]
Interviewer: Let’s do that.
In this episode, the student attempted to find the areas

under the curves of ‘‘�ðxÞ vs x’’ and ‘‘AðxÞ vs x’’ to plug in
the integral. After being told that the area equaled the
whole integral, not just the integrand, he was able to choose
the correct graph.

11. An interview episode in which a student selected
the graph to find the area based on incorrect

property of the integral in interview 6

The following episode started after the student had set

up the integral for the resistance R ¼ R
2
0
�ðxÞ
AðxÞ dx.

Student: Now I have to find the area underneath the
curve.
Interviewer: Which curve do you use?
Student: You actually have two functions here, so I’ll

need two areas.
Interviewer: What are the areas?
Student: Area under this one and this one. [points at the

graph of ‘‘�ðxÞ vs x’’ and ‘‘AðxÞ vs x’’]
Interviewer: What will you do with those areas?
Student: Since it’s a division here so I have to divide the

areas.
Interviewer: You actually can’t do that because you have

R
2
0
�ðxÞ
AðxÞ dx and what you did was to find

R
2

0
�ðxÞdxR

2

0
AðxÞdx . They are

not equal.
Student: Umm . . . so then I would say this graph. [points

at the graph of ‘‘�ðxÞAðxÞ vs x’’]
Interviewer: Yeah, that’s right.
The student in this episode noticed that he had two

functions so he needed two areas. He also attempted to
divide the areas, and recognized the correct graph after
being told that the integral of a quotient was not the
quotient of integrals. These indicate that he was relating
the area under the curve with the individual function, not
the whole integral, and was holding a misconception about
the property of the integral.
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