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Students’ difficulties with integration in electricity
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This study investigates the common difficulties that students in introductory physics experience when
solving problems involving integration in the context of electricity. We conducted teaching-learning
interviews with 15 students in a second-semester calculus-based introductory physics course on several
problems involving integration. We found that although most of the students could recognize the need for
an integral in solving the problem, they failed to set up the desired integral. We provide evidence that this
failure can be attributed to students’ inability to understand the infinitesimal term in the integral and/or
failure to understand the notion of accumulation of an infinitesimal physical quantity. This work supports
and extends previous research on students’ difficulties with integration in physics.
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L. INTRODUCTION

Students in calculus-based physics courses are often
expected to have sufficient mathematical knowledge and
skills to be applied to physics problems. Yet research in
physics problem solving indicates that students’ transfer
from mathematics to physics does not happen as often and
easily as we expect. This is not because students do not
have the necessary mathematical resources but because
they cannot appropriately activate those resources in phys-
ics contexts [1,2].

Integration is a very powerful mathematical tool widely
used in physics, especially in electricity and magnetism
(E&M). Many problems in E&M require extensive appli-
cation of integration. In this study, we take a close look at
students solving electricity problems involving integration
to detect the difficulties students encounter when applying
the integral concept in physics problem solving.

While the study focuses on students’ difficulties with
integration, we do not describe how consistent students
were with the same incorrect reasoning. The reason we
decided not to pursue this kind of longitudinal analysis was
because in the teaching-learning interviews we provided
students with hints to enable them to eventually solve each
problem. Thus, their reasoning on the subsequent problems
might have been affected. Therefore, measurements of the
consistency of students’ difficulties across interviews
would not be valid.

In the next section, we provide an overview of the
related literature on students’ difficulties with integration
in calculus and in E&M. Section III describes the context
and methodology of the study. The findings from the inter-
views are presented in Sec. IV. A discussion on how our
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findings support and extend other works on related topics is
presented in Sec. V. The limitation of the study as well as
future work will be discussed in Sec. VI.

II. RELATED LITERATURE

Research on students’ application of calculus in physics
suggested that students might not conceptually understand
mathematical processes although they could easily carry
out the calculations [3]. Among the earliest research on
students’ understanding of integration was the work of
Orton [4]. In that study, 110 British students aged 16-22
were interviewed on several tasks involving the concepts of
limit and integration. Orton found that students’ errors with
these basic concepts of calculus could be classified as
structural (fundamental or conceptual), executive (opera-
tional and procedural), or arbitrary. He also found that the
majority of students did not view the integral as the limit of
a Riemann sum and talked about such limit as an approxi-
mation, not as an exact answer, although they had no
difficulty evaluating a given Riemann sum.

Yeatts and Hundhausen [5], based on their teaching
experience, described students’ difficulties when transfer-
ring from calculus to physics in three categories. The first
category— “‘notation and symbolism”—included difficul-
ties that arose from students’ rote memory of, and hence,
reliance on the symbols used in each context. Mathematics
and physics might use the same notation or symbol to mean
different things, thus causing difficulties to students. The
second category—‘‘the distraction factor”—occurred
when the surface features of the problem hindered the
underlying mathematical process. The third category was
“compartmentalization of knowledge,” which occurred
when students stored knowledge of different disciplines
in different “cabinets” and activated knowledge in each
“cabinet’ only in the corresponding discipline.

Grundmeier et al. [6] surveyed 52 students who had
completed a calculus class that covered the theory and
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techniques of integration to explore students’ ability to
give a definition of the definite integral in words and in
symbols, to interpret and represent an integral graphically,
to evaluate integrals, and to recognize the use of integrals
in the real world. They found that students’ knowledge of
the definition of the integral did not affect their ability to
perform routine calculation on the integrals. They also
found that students could “‘perform integration as a proce-
dure with limited understanding that they are finding the
area under the curve and that this area is being found as a
limit of estimation for that area.”

Thompson and Silverman [7] pointed out that, for stu-
dents to perceive the area under a curve as representing a
quantity other than area (e.g., velocity, work), it was im-
portant that students considered the quantity being accu-
mulated as a sum of infinitesimal bits that were formed
multiplicatively. They also proposed the accumulation
model which considered integration as an accumulation
of the bits that were made of two multiplicative quantities.
This model emphasized the two “layers” of integration:
the multiplicative layer when the bits were formed and the
accumulative layer when the bits were accumulated. In our
study, we found evidence of students’ failure in interpret-
ing the meaning of the area under the curve when they did
not understand the structure of the Riemann sum. The hints
we provided to the students to help them set up the correct
integrals were also built upon the structure of the Riemann
sum.

Cui et al. [2] investigated students’ retention and transfer
from calculus to physics. They found that students had
significant difficulties distinguishing variables and con-
stants in an integral as well as determining the limits of
an integral. They also found that four out of seven inter-
viewees recognized the use of integral in a physics problem
by recalling the strategy they had learned from in-class
examples while the other three students had a rough idea of
an integral as a sum of an infinite number of small
elements.

Meredith and Marrongelle [8] investigated the resources
that students used to cue integration in electrostatics prob-
lems. They used the notion of Sherin’s symbolic forms [9]
to describe these resources. A symbolic form is a cognitive
mathematical primitive which allows students to ‘“‘asso-
ciate a simple conceptual schema with an arrangement of
symbols in an equation” ([9], p. 482). Meredith and
Marrongelle identified three symbolic forms that students
used to cue integration, namely, the recall cue, the depen-
dence cue, and the parts-of-a-whole cue. Recall is not a
symbolic form because it does not have a mathematical
structure, but it is commonly used in cueing integration.
The recall cue is identified when students recall a previ-
ously learned strategy when solving a problem. The de-
pendence symbolic form is described as ‘“a whole depends
on the quantity associated with an individual symbol.”
The dependence cue is identified when students decide to

integrate because there is a quantity that depends on an-
other quantity. The parts-of-a-whole symbolic form is
described as ‘“‘amounts of generic substance, associated
with terms that contribute to a whole.” Interpreting an
integral as an accumulation of infinitesimally small ele-
ments indicates the use of parts-of-a-whole cue. Meredith
and Marrongelle also found that the dependence cue was
more commonly used by students than the parts-of-a-
whole cue, although “‘the use of the dependence symbolic
form led to inaccuracies if the quantity being integrated
was not a rate or a density” ([8], p. 577). They suggested
that the parts-of-a-whole symbolic form was a more
powerful and flexible resource to cue integration. They
also proposed instructional strategies to promote students’
use of the parts-of-a-whole recourse to cue integration in
physics problems.

Most recently, Wallace and Chasteen [10] found that
part of students’ difficulties with Ampere’s law was due
to students not viewing the integral in Ampere’s law as
representing a sum, which aligned with the work of
Manogue et al. [11] on the same topic.

In our point of view, the application of integration in a
physics problem can be divided into four steps:

Step 1: recognize the need for an integral.

Step 2: set up the expression for the infinitesimal
quantity.

Step 3: accumulate the infinitesimal quantities.

Step 4: compute the integral.

The work by Meredith and Marrongelle [8] investigated
the first step. Although they did mention that students
might misapply the symbolic forms in setting up an inte-
gral, they did not investigate this misapplication in detail.
The work of Cui ef al. [2] mentioned some of the difficul-
ties students had when applying integral in physics (i.e.,
step 2) but did not discuss them in detail. Our current study
adds the missing piece to the picture. We investigate stu-
dents’ difficulties in all four steps of the process, especially
those in steps 2 and 3. Specifically, we examine the re-
search question: What are the common difficulties that
students encounter when solving problems in electricity
involving integration?

III. METHODOLOGY

In the spring semester of 2009, 20 students at a large
Midwestern U.S. university were randomly selected from a
pool of 102 volunteers enrolled in a first-semester calculus-
based physics course (which we call Engineering Physics 1
or EP1) to participate in our study on problem solving in
mechanics. In that study, each of these 20 students was
interviewed four times during the spring 2009 semester
(interviews 1-4). In the fall semester of 2009, 15 of these
20 students, who were enrolled in the second-semester
calculus-based physics course (Engineering Physics 2 or
EP2) at that time, agreed to continue with our study in
electricity and magnetism. Among these 15 students, there
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were 9 males and 6 females. By the time of the interviews,
all of these students had completed two semesters and were
taking the third semester of college calculus.

Each of these 15 students went through another se-
quence of four interviews (interviews 5-8) during the
fall 2009 semester. Each interview occurred within two
weeks after the students had completed an exam in their
EP2 course. The materials covered in the interviews were
the materials that had been tested in the most recent exams.
All of the interviews were conducted by the first author
of this paper. The interviews that we used are called
teaching-learning interviews [12—-14]. Unlike more com-
monly used clinical interviews where the goal is to probe
students’ reasoning, the focus of a teaching-learning
interview is to find out not just how students reason, but
also how students might change the ways in which they
reason based on scaffolding and hints provided by the
interviewer. Thus, teaching-learning interviews are used
to find out how people learn and how such learning can
be facilitated. In this spirit, students when presented
with a problem were asked to think aloud as they attempted
to solve the problem on their own. If the student was
unable to proceed, or was clearly headed in a wrong
direction, after a while the interviewer would interject by
asking the student leading questions and providing hints to
enable the student to progress toward the solution of the
problem.

In each of the four one-hour interviews, students were
asked to solve three to five problems on a topic in elec-
tricity and magnetism. The topics included charge distri-
bution and electric field in interview 5, resistance and
capacitance in interview 6, current density and Ampere’s
law in interview 7, and RLC circuit in interview 8. These
problems spanned a broad range of difficulty and required
several different mathematical skills. In this paper, we
only discuss the problems involving integration. The
problem statements will be presented in the results
and discussion section when students’ difficulties in solv-
ing the problems are discussed. Students’ difficulties with
integration in Ampere’s law require in-depth studies on this
topic, which have been completed by Manogue et al. [11]
and Wallace and Chasteen [10], so we will not discuss
students’ difficulties with integration in Ampere’s law in
this paper.

All interviews were videotaped and audiotaped and were
transcribed verbatim. Students’ worksheets as well as in-
terviewer’s field notes were also collected. We first exam-
ined the field notes to identify interesting points in each
interview then referred to the student’s worksheet and
interview transcripts for details on what students wrote
and said. We focused our attention on how students recog-
nized the need of an integral and how they set up and
computed the desired integral. We listed all errors students
made and the number of students making each error, and
the hints provided by the interviewer, if any. Finally, we

looked for the most common errors and the emergent
themes.

IV. RESULTS

Many problems in E&M involve calculating a physical
quantity from other nonconstant quantities. Unlike typical
problems in calculus courses in which students are given
integrals to compute, physics problems usually do not have
predetermined integrals and even do not indicate that in-
tegrals are needed to solve the problems. Hence, students
must be able to recognize the need for an integral and set
up the desired integral from the physics scenario described
in the problem statement. So the first important step in
solving a problem is to recognize whether or not a problem
requires integration. This step is not trivial for most stu-
dents because they usually apply the formulas from the
textbook without noticing the conditions under which
those formulas hold. For example, the formula of resist-
ance R = p% only holds for a conductor with constant
resistivity p and constant cross-sectional area A along its
length L, so if p or A or both of them are not constant, then
an integral must be employed to calculate resistance.
Research by Meredith and Marrongelle [8], as mentioned
in the literature review, reveals the resources that students
invoke to cue integration.

The central idea underlying the integral is
accumulation—adding up infinitesimal amounts of a
physical quantity to obtain the total amount of that quantity
(e.g., resistance) or adding up infinitesimal effects to obtain
the total effect (e.g., electric field). So to obtain a correct
integral, students must have the correct expression for the
infinitesimal elements and add up those elements in an
appropriate manner (e.g., vectorially, reciprocally). An
integral is ready to be computed only after all these steps
are done correctly. In summary, the application of integra-
tion in physics problems can be divided into four steps:
(i) recognize the need for an integral, (ii) set up the
expression of the infinitesimal elements, (iii) accumulate
the infinitesimal elements, and (iv) compute the integral.

A common theme observed in our interviews was that all
students, at some point during the interviews, expressed
their understanding of an integral as an accumulation of
infinitesimal elements. However, only one or two of them
could carry out this strategy without assistance from the
interviewer. All other students were not confident in per-
forming the steps and needed guidance through the
process.

In each of the following subsections, we discuss the
difficulties students encounter at each of the steps men-
tioned above. At each step, we will start with a general
description of the difficulties and then present examples of
those difficulties in each of the problems under investiga-
tion as well as the number of students making each error.
We will use pseudonyms for the students mentioned in
these subsections.
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A. Students’ recognition of integration

Most of the students in our interviews did not have
significant difficulty recognizing the need for integration
in solving the problems. We observed that the nonconstant
physical quantity given in the problem statement was the
major cue for integration, while recalling similar situations
was the strategy used by a few students. These findings are
consistent with those of Meredith and Marrongelle which
state that the recall cue and the dependence cue are the
most common cues used by the students to cue integration
in electrostatic problems. So in this subsection, we will
describe how our students recognized the use of integration
in our interview problems and also relate with the findings
of Meredith and Marrongelle in their study.

The charged arch problem (Fig. 1) and the charged rod
problem (Fig. 2) were asked in interview 5. These problems
were very similar to the homework and exam problems in
the course, so all students stated that they had to set up an

integral to calculate the electric field. In other words, the
recall cue was used by the students to cue integration in
these familiar problems.

On the cylindrical conductor problem (Fig. 3), 12 out of
15 students stated, with different levels of confidence, that
an integral was needed because the resistivity was chang-
ing along the conductor. The reasoning provided by David
“since p isn’t constant we’re going to have to do an
integral” was typical for students who were confident
with their reasoning. On the other hand, the question posed
by Mary, after setting up the expression “%L, “Do I have to
put an integral somewhere?” indicated her uncertainty
about the use of integration in the problem. The remaining
three students also arrived at the expression QT"L but stated
that was the final answer. When the interviewer hinted that
the final answer should not contain x, these students were
able to recognize that they needed an integral. The follow-
ing excerpt is typical among this group of students.

You are standing at the center of a non-conducting circular arch of radius R in a stormy day.
There are negatively charged clouds over the arch. The charge distribution A on the arch now

depends on the angle 6 as per the function:

A(B) = Ag cos @

where A, is a positive constant.

Find the magnitude and direction of the electric field at your feet (i.e. at a point O on the ground

directly below the top of the arch).

FIG. 1.

The charged arch problem (interview 5).

A straight metal rod of length L is lying on the ground but is insulated from the ground.
The charge on the rod is distributed with charge density given as per the following function:

Ax)=« x?
where o is a positive constant, x is the position on the x-axis relative to the origin O as shown in

the figure below.

Find the magnitude and direction of the electric field at your feet, located at x = 0.

§

¥

&

Ov

FIG. 2. The charged rod problem (interview 5).
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Find the resistance of a cylindrical conductor of length L, diameter D. The resistivity p(X) is
changing along the conductor as per the following function:

p(x)=ax
where x is the distance from the left end of the conductor.

FIG. 3. The cylindrical conductor problem (interview 6).

Interviewer: Is this [“TXL] your final answer?

Brian: Uh ... yes.

Interviewer: But that answer contains x which is
changing.

Brian: Okay ... so ... should I use integration?

The cylindrical problem was not asked on any home-
work or exam in the course, so the recall cue was not
employed. Instead, the majority of students recognized
the need for an integral based on the nonconstant resistivity
that was given; i.e., they employed the dependence cue in
this problem. Guiding the students to think of the depen-
dence cue was the strategy employed by the interviewer to
hint students who did not spontaneously recognize the use
of the integral as in the excerpt above.

The truncated-cone conductor problem (Fig. 4) fol-
lowed the cylindrical conductor problem in interview 6.
Thirteen out of 15 students were able to recognize
comparing this problem with the cylindrical conductor
problem. They stated that they could use the integral set
up in the cylindrical conductor problem except that the area
was then a variable. The following excerpt demonstrates
this reasoning.

Interviewer: Let’s move on to the next problem [the
truncated-cone conductor problem]

James: Alright. The tiny bit in R equals constant p times
change in L over change in area [writes dR = "%, then
replaces A with ‘—1‘ 7D?] 50 basically this is the same integral
as in the problem we’ve just done. This one now has two
variables. We’re not summing any changes in diameter,

we’re just summing the length pieces. Um so ... [writes
R = %% % ... little d and big D, so we have to incor-
porate that in there somehow.

The other two students wrote an integral with dA—the
infinitesimal cross-sectional area—as the infinitesimal
term. This error will be discussed in Sec. IV B because it
is related to the expression of the infinitesimal quantity.

The capacitor problem (Fig. 5) was the last problem of
interview 6. Only 12 out of 15 students got to this problem
within the one-hour time limit of the interview. All of them
stated that they had to use integral to calculate the capaci-
tance because the diameter was not constant. The follow-
ing excerpt is typical for this reasoning.

Interviewer: Now we have the last problem. [the capaci-
tor problem]

James: Okay . .. So here we’re trying to find capacitance

which equals %. Diameter is not going to be constant so
204

we are going to have C equals [writes C = [ 5

constant though.

In this excerpt, the student recalled the formula for the
capacitance of a parallel-plate capacitor and identified
nonconstant and constant quantities. As he recognized
that the diameters of the plates were not the same, he
decided that the capacitance must be calculated by an
integral. This is evidence of the use of the dependence
cue to cue integration in this problem.

The current problem (Fig. 6) was asked in interview 7.
This problem was one of the homework problems that
students were asked prior to the interview. Thirteen out

] &g is still

A conductor has diameter decreasing from D to d over its length L. The resistivity p is constant
along the length of this conductor. Find the resistance of this conductor.

FIG. 4. The truncated-cone conductor problem (interview 6).
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A capacitor is made of two circular conducting plates of diameter D and 4. The permittivity & of
the material filled between the plates is constant. Find the capacitance of this capacitor.

FIG. 5. The capacitor problem (interview 6).

A cylindrical wire of radius R is carrying a current of density j = «r (« is a constant, r is the
distance from the center of the wire). Find the total current in the wire.

0

a.r

FIG. 6. The current problem (interview 7).

of 15 students stated that they needed to have an integral to
calculate the total current. These students recognized the
use of integral by recalling the homework problem or
reasoning on the nonconstant current density, i.e., both
the recall cue and the dependence cue were used by the
students in this problem. The other two students attempted
to find the total current by multiplying the current density
at the surface of the wire by the total cross-sectional area of
the wire. Upon being hinted that the current density had
different values at different distances from the center of the
wire, these students stated that they had to do an integral.
The following excerpt was from an interview with one of
these students.

Interviewer: How do you find the total current in this
problem? [the current problem]

Chelsea: Current is j times A.

Interviewer: What value of j in this problem?

Chelsea: Well j is a times r, and the radius is R, so j is «
times R. [writes | = aRA]

Interviewer: So what is A?

Chelsea: A is ... pi R squared ... [writes [ = aRA =
aR7R? = awR3]

Interviewer: But the current density is changing as you
go from the center to the edge of the wire, so it’s not always
a times R.

Chelsea: Oh okay ... so then I will do an integral.

Interviewer: How do you know you have to do an
integral?

Chelsea: ‘Cause you said j was changing.

In this excerpt, the student attempted to use the value of
the current density at the edge of the wire to plug in the
equation for current. Upon being hinted that the current
density was changing, she was able to recognize the need
for an integral. Her reasoning ‘‘cause you said j was

changing” indicates that she used the dependence cue to
cue integration after the hint.

In conclusion, we found that most of the students could
easily recognize the need for an integral in the problem.
Students’ familiarity with the problems and the presence of
the nonconstant quantities were the major cues for students
to think of using integration. This finding agrees with the
finding of Meredith and Marrongelle that the recall cue and
the dependence cue were most commonly used by students
to cue integration in physics problems [8]. In our study,
students usually used the recall cue in problems which
were familiar to them, and used the dependence cue in
unfamiliar problems. Guiding students’ attention to the
nonconstant quantity to trigger the dependence cue was
also a productive strategy used by the interviewer to help
students recognize the use of the integral when they could
not invoke it by themselves.

B. Set up the expression for the
infinitesimal quantities

In order to calculate an integral, one must know the
variable of integration. One way to do that is to look at
the infinitesimal term (e.g., dx, dr, d6, ...) in the integral.
In physics problems, the infinitesimal term also carries a
physical meaning that must be understood while setting up
the integral. For example, if F(x) is a function of force with
respect to position x, then [ F(x)dx means integrating the
product of the force F(x) at position x and the correspond-
ing infinitesimal distance dx, in the direction of the force to
obtain the total work done over the whole distance.
However, [ F(t)dt means integrating the product of the
force F(¢) at time r and the corresponding infinitesimal
time interval df to obtain the total impulse due to the force
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over the total time interval. In these examples, dx and dt
not only indicate the variable of integration but also have
their own physical meanings: infinitesimal distance and
infinitesimal time interval. So it is mathematically incom-
plete and physically meaningless to write the integral as
[ F(x). However, it was observed that many students in our
interviews either set up the integral without the infinitesi-
mal term or simply appended it to the integrand or to
whatever quantity was changing. These actions essentially
changed the physical meaning of the integrand.

Charged arch problem (Fig. 1).—Starting with the
formula for the electric field due to a point charge E =

1

4me

to a charge element dg as dE =

%, all students were able to write the electric field due
477'8() Lizq :

Charged rod problem (Fig. 2).—This problem followed
the charged arch problem in the same interview. After
doing the charged arch problem, all students knew that
they had to integrate dE = dq

47T£0 e

Cylindrical conductor problem (Fig. 3).—To solve this
problem, one must set up the expression dR = p(x) 4 for
the infinitesimal resistance of a thin slice of the conductor,
then integrate it to find the total resistance R = [} p(x) 4
where A is the constant cross-sectional area of the conduc-
tor. Eight out of 15 students started with the formula of
resistance R = p% and then set up the integral R =% X
[ p(x) or R=1% [ p(x)dx. The first integral was mathe-
matically incomplete and the second integral did not rep-
resent any physical quantity. By simply appending the
infinitesimal term dx into the integrand, students changed
the physical meaning of the infinitesimal quantity. For
example, the expression = L4 represents the resistance of
the infinitesimally thin conductor whose length was dx,
while the expression %L dx, obtained by appending dx into
the formula for resistance, did not represent any physical
quantity. The following excerpt was taken from the inter-
view with a student who set up the integral R = & [ p(x)
and then appended the term dx into the integrand when
being asked about the variable of integration.

Stephanie: So general equation [writes R = £¢ L i’I’JLZ]
and then this [p] is a function of x and ... I have to do

something with the integral because we have to go from the
zero point to L.

Interviewer: Okay, so integral of what?

Stephanie: Of p(x). [writes %p(x)]

Interviewer: Uh huh. But what variable are you taking
integral with?

Stephanie: Variable here is x.

Interviewer: So you should have an infinitesimal term to
indicate that . ..

Stephanie: What do you mean by infinitesimal term?

Interviewer: 1 mean dx.

Stephanie: Okay. [writes [§ AL L p(x)dx] So four L over
pi D squared are all constants and you have the integral of

p(x) that’s gonna go from 0 ... to
and gets 24 2aL7y

Intervzewer Okay ... Let’s see, you appended dx into
the integrand before taking the integral. What is the mean-
ing of dx?

Stephanie: 1t is the variable of the integral.

Interviewer: Yeah, right, but what is the physical quan-
tity that dx represents?

Stephanie: Physical quantity? Um ...
It’s just dx.

Interviewer: Alright, dx is a small length segment along
the conductor. With that, can you tell the meaning of the
whole integral that you have?

Stephanie: Um ... going from there to there. [two ends
of the cylinder]

Interviewer: No,
integration.

Stephanie: Is it the adding small pieces thing?

Interviewer: Yeah, right. So in your integral, what are the
pieces that you add?

Stephanie: The x values ... or the cross-section values.

Interviewer: Okay, from your integral, the small piece is
% p(x)dx. Can you explain the physical meaning of this
term?

Stephanie: 1 don’t know.

Interviewer: Okay, in this expression for the piece, you
have the total length L, resistivity p(x), and infinitesimal
length dx on the numerator and area 7D on the denomi-

.. L [does the integral

I don’t know ...

I mean the process underlying

4
nator. But in the formula for resistance R = p , there is
only one length on the numerator. So the express1on you
have does not represent resistance of a piece of the
conductor.

Stephanie: So 1 should remove this L then.

Interviewer: Yes, because you already have the infini-
tesimal length dx.

Stephanie: Got ya.

Stephanie easily recognized that she needed to do an
integral “to go from the zero point to L.” However, the
integral she set up after that did not have an infinitesimal
term dx. She indicated that she did not know what the
interviewer meant by “‘infinitesimal term” and simply
appended it to her integral without any changes to the
integrand. Her answer to the interviewer’s question on
the physical meaning of dx—*“I don’t know ... it’s just
dx”’—indicated that she did not know what dx represented.
Even after being told explicitly that dx represented an
infinitesimal length segment, she was still unable to inter-
pret the physical meaning of the expression she set up for
the pieces, and therefore was unable to recognize that her
expression for the infinitesimal piece did not represent the
resistance of an infinitesimal conductor. This excerpt is an
example of the instance that students’ lack of understand-
ing of the infinitesimal term led them to set up incorrect
expressions for the infinitesimal quantity. In this case,
Stephanie included both L and dx in the expression of
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infinitesimal resistance because she did not know what dx
meant in the problem.

Among the remaining seven students, one student rec-
ognized that she needed an infinitesimal length dL in place
of L in the formula, which was correct. Three other stu-
dents recognized this after being reminded that L was the
length of the whole conductor while we only considered
the length dx of an infinitesimal conductor at location x.
The other three students did not know what to do in the
problem and needed step by step instruction to solve the
problem.

Truncated-cone conductor problem (Fig. 4).—Twelve
out of 15 students stated that they could use the integral
set up in the cylindrical conductor problem but with area
being a variable. They could also recognize that since there
were two variables in that integral, x and A, they had to
write one variable in terms of the other in order to integrate.
The transcript presented when we discussed this problem
in Sec. IVA is an example from this group of students. All
of the students needed a lot of guidance on basic geometry
to write the area A in terms of x.

One student set up the correct integral but stated that the
limits of integral were from d to D because the diameter
was changing. Upon being hinted that dx indicated inte-
gration with respect to x, hence the limits should be the
range of x, this student recognized that the limits were from
0 to L. Therefore, we interpret this student’s wrong choice
of limits as evidence that she did not understand that dx
indicated the integration variable x.

Two other students set up the integral for resistance as
R = '[77'(D/2)2 pL

wd)2? dA - These students stated that because area A

was changing, they used the infinitesimal area dA.
Obviously, the term % did not represent the infinitesimal
resistance of a thin slice of the conductor.

Capacitor problem (Fig. 5).—To solve this problem,
students needed to think of a capacitor with a large sepa-
ration between the plates as a series combination of several
capacitors made of fictitious plates separated by an infini-
tesimal distance dx. This strategy was novel to many
students, so they attempted to use the formula for capaci-
tance of a capacitor with small separation. The students
needed to be told that the formula was only applicable to
the case when the separation was small compared to the
diameters of the plates, and hence they had to consider the
capacitor with a large separation as being made of several
plates close to each other. Then, 10 out of 12 students were
able to set up the correct expression for capacitance of a
capacitor with infinitesimal separation between the plates
dc = s%. The other two students used the differential
area dA and got dC = sdTA. This error was similar to the
error observed in the truncated-cone resistor problem,
where students had % as the infinitesimal resistance.

This type of error suggested that these students seemed
to simply prefix “d” to whatever quantity that was chang-

ing (i.e., area A in these cases) without understanding the
meaning of the infinitesimal term in the integral.

Current problem (Fig. 6).—The correct expression for
the infinitesimal current in the wire is j(r)dA, where j(r) is
the current density at a distance r from the center of the
wire and dA is the area of an infinitesimally thin ring on
the cross section of the wire. Thirteen out of 15 students
made mistakes similar to those observed in the cylindrical
conductor problems: they set up I =A [j(r) or I =
A [ j(r)dr, where A was the total cross-sectional area of
the wire. This is further evidence that students seemed to
integrate whatever was changing without understanding
the physical meaning of the expression for the infinitesimal
quantity, which usually led them to incorrect integrals.
When the interviewer reminded students about the formula
I = [j(r)dA, all students agreed that they had seen it
before but then failed to explain what dA meant in that
formula.

In conclusion, we found that students’ failure in setting
up the expression for the infinitesimal quantity was due to
their lack of understanding of the physical meaning carried
by the infinitesimal term (e.g., dx, dr,d6,...) and the
expression for the infinitesimal quantity. This lack of
understanding caused students to ignore the infinitesimal
term or to simply append it to the integrand, or even to
prefix d to whatever quantity was changing when setting up
the expression for the infinitesimal quantity. All of these
actions essentially changed the physical meaning of the
expression being set up as discussed in the truncated-cone
conductor, the capacitor, and the current problems above.

C. Accumulating the infinitesimal quantities

It was observed in our interviews that after having the
correct expression for the infinitesimal quantity, almost all
students started integrating that expression without attend-
ing to how these quantities should be added up.

Charged arch problem (Fig. 1).— Electric field is a
vector quantity, so the electric fields dE due to the infini-
tesimal elements of charge on the arch must be added
vectorially. Eight out of 15 students in our interview did
not notice the vector nature of dE and integrated the whole
dE, while the other seven students used symmetry to argue
that only the y component of the electric field due to each
charge element contributed to the total field and integrated
only the y component of dE.

Charged rod problem (Fig. 2).—The electric fields dE
due to all infinitesimal elements of charge dg on the rod
were pointing in the same direction so the total field could
be obtained by simply integrating dE. So even though all of
the students could do this step, we could not conclude
whether they understood that they were adding vectors
having the same direction or were just adding the electric
fields as if they were scalars.

Cylindrical conductor and truncated-cone conductor
problems (Figs. 3 and 4).—The slices that made up the
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conductor were connected in series, so the total resistance
could be obtained by adding up the resistance of these
slices. When the thickness of each slice became infinitesi-
mally small, this was done by integrating dR. Similarly, in
the current problem (Fig. 6), because the currents in all thin
rings that made up the cross section of the wire were in the
same direction, the total current could be obtained by
integrating the infinitesimal current d/ in each ring. In
these three problems, the total quantities were obtained
by simply integrating the infinitesimal quantities, i.e., R =
JdR and I = [dlI, so we could not conclude whether or
not students understood how the infinitesimal quantities
must be accumulated.

Capacitor problem (Fig. 5).—The capacitor in this prob-
lem could be viewed as a series of capacitors whose plates
were separated by a small distance. The equivalent capaci-
tance could be found by adding the capacitance of each

1

individual capacitor reciprocally, i.e., = Ci] + c% + e
eq

. l . l .
which became o f 2c When the separation between the

plates became infinitesimally small. This problem de-
manded more than just integrating the infinitesimal quan-
tities to obtain the total quantity. It also required an
understanding of integration in association with the physi-
cal situation of the problem.

Out of 12 students who attempted the capacitor problem,
only two students spontaneously recognized that they had
to integrate % . The other 10 students integrated dC and got

the integral C = [dC = [5 &2 These students imme-
diately recognized that this integral had dx in the denomi-
nator, so they attempted to bring dx to the numerator
although they could not give a reason why they could do
that. The interviewer had to give hints to cue students’
attention to the arrangement of the capacitors. The follow-
ing excerpt is typical in this situation.

Aaron: . .. since L is going to turn into dx I think ... but
to make that ... it should be dx in the denominator ...

wd?

[writes [§ e dIi and then flips the integrand]

Interviewer: Why did you flip it?

Aaron: Well, so that dx is in the numerator.

Interviewer: You must have a reason for flipping the
integrand.

Aaron: Oh, okay ...

Interviewer: What does your integrand mean?

Aaron: Like if you slice it up it’s just one of the slices.

Interviewer: Okay, but when you add up capacitance,
you must know how the capacitors are connected, that is, in
parallel or in series.

Aaron: Um ... it doesn’t say.

Interviewer: Look at how the plates are arranged.

Aaron: Um ...

Interviewer: You should draw some of the fictitious
plates to see how they are arranged.

Aaron: [draws the plates] Okay ... so ... they are in
series, aren’t they?

Interviewer: Yes, and what is the equation for capacitors
in series?

Aaron: It’s the one over thing.

Interviewer: So how should you integrate in this
problem?

Aaron: Well ... because integral means sum ..
have ... so the integral is ... [writes [ %]

In this excerpt, Aaron indicated an understanding of the
meaning of the integrand, the structure of the integrand
(i.e., dx must be in the numerator), and the formula for
capacitors in series. However, he was unable to recognize
that the capacitors were in series until he drew the fictitious
plates between the two plates of the capacitor. Similar
situations also occurred with other students who integrated
dC. This evidence suggested that students’ lack of visual-
ization of the physical scenario might account for their
disregard of how the quantity must be accumulated.

.and I

D. Computing the integral

The last step in applying integration to physics problems
is to compute the integral set up in the previous three steps.
This was expected to be an easy task for students because
they had practiced computing integrals in their calculus
courses. However, students still had some difficulties with
computing the integrals in our interview problems.

Charged arch problem (Fig. 1).—Upon having the in-
tegral for the electric field due to the arch E = [ ;-1 44 x

4meg
cosf, 13 out of 15 students were unable to recall the
relation dg = Ads between the charge element dg and
the length ds of that element along the arch. Eleven out
of 15 students could not relate infinitesimal length of the
arc to the infinitesimal angle it subtended at the center:
ds = rdf. After the variable conversion, the resulting

simplified integral was [ 7_7/#2 /2 cos’6df. All 15 students

needed to be given the equation cos?d = 1(1 + cos26)
and two of them needed assistance in computing the in-
tegral explicitly.

Charged rod problem (Fig. 2).—We found that students’
difficulties with computing the integral in this problem
were due to students’ inability to interpret the physical
meaning of symbols. Twelve out of 15 students interpreted
r in Coulomb’s law as “radius,” so they were unable to
decide whether » was a constant or a variable in the
integral. The charged rod problem came right after the
charged arch problem, so all students were then able to
write dg = Ads, but 11 of them were unable to recognize
that ds = dx in this problem.

Cylindrical conductor problem (Fig. 3).—The integral
in this problem was very simple so all students were able to
compute it without assistance from the interviewer.

Truncated-cone conductor (Fig. 4) and capacitor prob-
lems (Fig. 5).—The most difficult part of computing this
integral was to figure out the expression for the cross-
sectional area as a function of position. However, because
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it was not the purpose of the interview to test students’
geometric skills, the expression for A(x) was provided to
the students if they failed to get it after a few attempts. The
resulting simplified integral was [& WW’ where

D, d, L were constants. Only two students succeeded in
computing this integral using substitution. Others needed
to be given the result of the integral. In the truncated-cone
conductor problem, one student set the limits of the inte-
gral as d and D (i.e., the diameters of the conductor at two
ends) based on the fact that the diameter was changing. The
same error was made by five students when solving the
capacitor problem, including those who had the correct
limits for the integral in the truncated-cone conductor
problem.

Current problem (Fig. 6).—The most difficult part of
computing the integral in this problem was to write the
differential cross-sectional area dA in terms of the distance
r from the center of the wire. Asking students to take the
derivative of the cross-sectional area A = 772 helped stu-
dents derive the expression dA = 2arrdr. The resulting
integral was very simple, so all students were able to
compute it.

In summary, we found that students encountered a num-
ber of difficulties in computing the integrals in physics
problems. Some of these difficulties could be attributed
primarily to students’ misunderstanding of the physical
meaning of symbols in the integrals. Other difficulties
arose when students could not recall basic mathematical
equations. A few students still had difficulties determining
the limits of the integrals. Many students were unable to
compute mathematical integrals.

V. CONCLUSION

In this study, we took a close look at students solving
problems involving integration in the context of electricity.
We found that students’ failure in applying integration to
our interview problems occurred when students set up the
expressions for the infinitesimal quantities and accumu-
lated those quantities using integral. These difficulties
might be attributed primarily to students’ inability to in-
terpret the meaning of the infinitesimal term dx in the
integral and to students’ disregard of how the quantities
must be added up. A few students still had difficulties
recognizing when an integral was needed in a problem.
Students also had difficulties in computing the integrals
they had set up, mostly because they were unable to
interpret the physical meaning of the symbols and invoke
basic mathematical equations.

We answer our research question: What are the common
difficulties that students encounter when solving problems
in electricity involving integration? Students generally did
not have significant difficulty recognizing the need for
integration in a problem. However, students did have
significant difficulties setting up and computing the
desired integral. These difficulties included setting up an

incorrect expression for the infinitesimal quantity and/or
accumulating the infinitesimal quantities in an inappropri-
ate manner. Determining the limits of the integrals, relating
variables in an integral, and computing the integrals alge-
braically were also difficulties faced by some of the
students.

These findings align with those from other research on
students’ difficulties with integration. We found that the
nonconstant quantity given, either mathematically (e.g.,
resistivity as a function of position, charge distribution as
a function of angle) or pictorially (e.g., figure of a conduc-
tor with changing diameter), in the problem statement was
the cue for most students to think of integration in a
problem. This finding supports the conclusion of
Meredith and Marrongelle [8] that the most common re-
source that students use to cue integration is the depen-
dence cue. However, the dependence cue, as pointed out by
Meredith and Marrongelle, is only helpful when the non-
constant quantity is a density or a rate of change. This
finding also aligns with the fact that many students in our
study failed to set up the correct integral in problems
involving nonconstant quantities which were not rates of
change (e.g., resistivity, diameter).

Although most of the students indicated an understand-
ing of integration as an accumulating process, they were
not confident in carrying out the process and needed de-
tailed guidance from the interviewer. Some of the students
had difficulties determining the limits of integral. These
observations are similar to those described by Cui et al. [2].

Our study extends the literature on students’ use of
integration in physics problem solving. We found that the
major difficulties students encountered when attempting to
set up an integral in a physics problem were due to stu-
dents’ inability to understand the infinitesimal term in the
integral and failure to understand the notion of accumu-
lation of an infinitesimal quantity.

Meredith and Marrongelle [8] suggested that the parts-
of-a-whole symbolic form was a powerful and flexible
resource to cue integration and proposed instructional
strategies to promote students’ use of this recourse as a
cue for integration in physics problems. Our study points
out that setting up a correct integral in a physics problem
requires more than recognizing the need for an integral. It
also requires setting up the correct expression for the
infinitesimal quantity that each “part” represents and ac-
cumulating that quantity in a correct manner. There were
several students in our interviews who mentioned the sum
of infinitesimally small elements (although they did not use
that terminology) at some point while solving the prob-
lems, indicating that they had a rough idea of the parts-of-
a-whole resource, but then set up the incorrect expression
for the “part” or did not pay attention to how the ““parts”
should be added up. So we expand upon the conclusion of
Meredith and Marrongelle that although the parts-of-a-
whole symbolic form is the most powerful and flexible
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way to think of integration, it does not guarantee the
correctness of the integral that is set up.

VI. LIMITATIONS AND FUTURE WORK

The research methodology used in this study was indi-
vidual interview. This method allowed us to gain detailed
insight into students’ performance on the problems and
also enabled us to interview the same students several
times on different topics during the semester. On the other
hand, the individual interview method limited the number
of student participants in the study. There were only 15
students in our study compared to more than 200 students
enrolled in the course. Because of this fact, the major
limitation of this study is the generalizability of its
findings.

Based on our interview findings, we plan to develop
tutorial materials to address students’ difficulties with in-
tegration and implement them with all of the students in the
course (usually around 200+ students) in future semesters
when the course is offered to test the effects of those
materials in helping students learn to solve physics prob-
lems involving integration. As discussed in this paper, the
major challenges students faced when solving problems
involving integration were in setting up the expression
for the infinitesimal quantity and accumulating those

quantities in an appropriate manner. Therefore, our tutori-
als will focus on helping students learn the meaning of the
infinitesimal quantity (e.g., dx, dr, d6, ...) in the integral
and the accumulation process underlying the integral. Our
tentative strategy is to use a sample related problem seg-
mented into a sequence of several smaller exercises. The
first exercise asks students to calculate the total value of a
physical quantity of some individual objects (e.g., the
equivalent resistance of a few separate resistors,
the equivalent capacitance of a few separate capacitors).
The follow-up exercises are variations of the first exercise.
In these exercises, the individual objects evolve to become
infinitesimal parts of a larger object. We hypothesize
that by solving these exercises students might learn how
the total quantity of an object becomes an infinitesimal
quantity of a larger object and how a sum becomes an
integral.
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