General Scattering and Resonance – Exploring

Introduction

We are interested in the wave functions and eigenfunctions for a quanta in a general piecewise constant potential with E>V everywhere.  The simplest case beyond a step function would be the general three-region potential of figure 1.
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Figure 1:  A general three-region potential.
Recall that the wave function in each region is a free particle wave function but that the parameters in each region must be adjusted so that the function is smooth (continuous with continuous first derivative) across the region boundaries.

Matching boundaries in WFE

Let’s begin our exploration with the eigenfunctions of the specific situation represented by the energy diagram of figure 2.
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Figure 2: A specific three-region potential.
Activity 1:  Start WFE and change the Mode to Sketcher - Auto k.  This mode is basically identical to Sketcher mode - except it automatically calculates k and λ for you in each region based on the values of E and V.  Thus you save a bit of time but still have control over the eigenfunction parameters in each region.  Set up the energy diagram of Figure 2 in WFE by making the following settings:  

number of regions = 3, left edge x = -3.0nm, total energy = 3.0eV,

w (width) in all 3 regions = 2.0nm,

V in left region = 0.0eV, V in middle region = 2.0eV, and V in right region = 1.0eV.

Also set the equation type in each region to a*sin(kx+b).  (Recall that this is the easiest equation type to use when working graphically.)  Notice that k and λ have set themselves and cannot be changed.  Sketch the eigenfunction shown by WFE.

Of course, this eigenfunction is not valid.  Although it is correct in each region, it still needs to be matched across the boundaries.

Activity 2:  Adjust a and b in each region until the eigenfunction and first derivative are continuous at both boundaries.  (You may want to Show Derivative.)  Sketch the resulting eigenfunction. 

Now you have a valid eigenfunction.  The easiest way to make matches at both boundaries is to set a and b to some (arbitrary) values in the leftmost region, then adjust a and b in the center region to match the left boundary, and finally adjust a and b in the rightmost region to match the right boundary.  This way you won't mess up one boundary while matching the other.  (Note: you could also do this from right to left or from the center outward.)

As with the two region case, this is not the only valid eigenfunction.  Recall that there are still two free parameters in even after boundary matching.

Activity 3:  Find and sketch another valid eigenfunction in WFE by randomly altering a and b in one region and then rematching the boundaries by changing a and b in the other two regions.

This same procedure can be used to find valid eigenfunctions graphically in WFE for piecewise constant potentials with even more regions but it becomes tedious fast.  Since the Explorer mode matches boundaries automatically, it is more useful for looking at a large number of solutions quickly.

Exploring the possible solutions

Activity 4:  Choose Explorer in the Mode menu of WFE - the eigenfunction you just sketched should have transferred over to Explorer mode (actually WFE is graphing the wave function at time, t=0 but this is identical to the eigenfunction).  Press the run button and describe the behavior or the graphs in time.  Don't forget that things may be different in each of the three regions.  Sketch the probability density function.

As with the two-region case the sine-cosine type wave functions result in standing wave solutions.  (You can change A and B to see other standing wave solutions.)  In order to get pure traveling waves in at least one region you will need to change the equation type to Cexp(ikx)+Dexp(-ikx) and set either C or D to zero.  Recall that the two wave functions that correspond to the two classical cases of a particle traveling right or left have a pure right-going wave in the left region (connect from left to right, D=0) or a pure left-going wave in the right region (connect from right to left, C=0).

Activity 5:  Change the equation type to this complex exponential form and study the wave function and probability density function for these two cases.  For one of the two cases, stop the animation and sketch the wave function and probability density then run the animation and describe the time behavior in each region.  When you are done studying these two cases, examine the functions for several other settings of C and D.

Resonance - a special situation

Now let's look at the traveling wave functions for the more symmetric potential energy diagram shown in figure 3.
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Figure 3:  A symmetric three-region potential.
Activity 6:  Set up the energy diagram of Figure 3 in Explorer Mode of WFE - this should require only minor changes from Activity 5.  Also set the connection direction from Left to Right, C=0, and D=1.  Sketch the resulting wave function and probability density and describe its time behavior.  Leave the animation running and use the 
[image: image4.png]HOW



 control to slowly adjust the total energy upward toward about3.5eV.  What happens to the wave function and probability density as you approach this energy?  Sketch them (for some fixed time) and describe their time behavior.  (Look especially in the right region.)  Find the value of total energy near 3.5eV for which this effect is most pronounced.

Exercise 1:  Calculate the wavelength in the center region for this energy (recall the “easy” formula for this?).  How does it compare to the width of the center region?  Are there other wavelengths in the center region that might have a similar effect on the wave function?  What wavelengths?  Calculate the total energy for two of those wavelengths.

Activity 7:  Type each of those two total energies into WFE.  Sketch the resulting probability densities.  Do you see the result you expected?  What is the lowest total energy for which you expect to see this effect?  Plug it in and sketch the result.

When a half integer number of wavelengths fit in the center region no reflection occurs.  Thus, you see a pure traveling wave in both the left and right regions.  A beam of electrons shot toward a region represented by this potential would emerge in the left region with the same intensity that it  had in the right region (but there is a phase shift in the wave function – the electrons are not completely undisturbed by the interaction).  This results from destructive interference between the reflections at the two different boundaries and is one type of resonance.  This type of resonance is actually seen in nature in the scattering of low energy electrons by noble gas atoms - where it is called the Ramsauer effect, and in the scattering of neutrons from nuclei - where it is called a size resonance.  (p 202 Eisberg and Resnick)  A similar effect is used in optics to make antireflective coatings for lenses.

Broken symmetries and change in resonance

As is frequently the case in quantum mechanics, the symmetry of the energy diagram plays an important role in the existence of this type of resonance.  You can see this by changing the potential to break the symmetry.

Activity 8:  Change the potential energy in the right region of WFE to 1.0eV, making it like Figure 2.  Set the total energy to one of the resonance values you used in Activity 7.  How are the wave function and probability density function similar to those in Activity 7?  How are they different?  Try to find a value of total energy that has only traveling waves (flat probability density) in both the left and right regions.

Breaking the symmetry of the potential somewhat destroys the resonance effect - there is no longer an energy value where there is no reflection.  However, the amount of reflection is still small at about the same energies - so these energy values are still somewhat “special”.

More resonances

You can find resonances for any situation that can be represented by a symmetric energy diagram.  The following activities show some examples.

Activity 9:  Change the potential energy in the right region back to 0.0eV.  Set the potential energy in the center region to -1.0eV.  Calculate the lowest total energy (above 0.0eV) for which a half integer number of wavelengths will fit across the width of the center region now.   Set the total energy to about 0.1eV and slowly raise it up to this value and sketch your probability density.  Is it what you expected?  How is it similar to and different from previous resonance wave functions and probability density functions?

Here are some resonances in a five region potential:

Activity 10:  Switch the number of regions to 5 (the region widths will automatically go down to 1.2nm - leave them there).  Set the potential energies to 0.0eV, 2.0eV, 1.0eV, 2.0eV, and 0.0eV (from left to right).  This sets up a symmetric energy diagram.  For this diagram, 2.05744eV and 3.082eV are both (about) resonance energies - sketch the probability densities and describe the wave functions for these values of total energy.  Try to find one (or more) other resonance energies (for E>2.0eV) and sketch the wave function and probability density for it (them).  (Slowly raise the energy from 2.05744 and you should see the old resonance disappear and then a new one form when you get high enough in energy.  Remember that the control will change the energy faster if you click near its edges.)

With more than three regions there is no easy rule (like needing a half wavelength to fit across the center region) for finding resonance energies.  (But they can be found mathematically – which is the subject of several of the problems in the applications section.) 
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