

## APOS Theory

Andrew Bennett  
Center for Quantitative Education  
Department of Mathematics

## REESE Project

- Track development of engineering student longitudinally
- Track transfer of ideas from math to physics to engineering
- Need a framework for describing conceptual development that covers several years worth of courses.

## APOS Theory

- Says students build concepts through a standard set of steps  
Action – Process – Object – Schema
- Built on ideas of Piaget (primarily by Dubinsky)
- Widely used in the RUME community

## Definitions

- **Action:** able to carry out rote procedures, bound to specific representations
- **Process:** able to see the process as a whole, can use multiple representations, can reverse the process, compose with other processes, etc.
- **Object:** reify the process into an object, can discuss properties of the object or collections of examples of the process

## Arithmetic

- **Action:** Can carry out rote computations
- **Process:** Can solve missing number problems
- **Object:** Can discuss properties (commutativity, associativity, etc.) of operations
- Algebra is at the Process/Object level

## Function

| <u>Action</u>                                                                                                                                                                                                                                                                                                             | <u>Process</u>                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul style="list-style-type: none"> <li>• A function is tied to a specific rule, or formula</li> <li>• A student must perform <i>each action</i></li> <li>• The “answer” depends on the formula</li> <li>• A student can only imagine a single value at a time (so <math>x</math> stands for a specific number)</li> </ul> | <ul style="list-style-type: none"> <li>• A function is a general input-output machine</li> <li>• A student can imagine the <i>entire process</i> at once</li> <li>• The process is independent of the formula</li> <li>• The function is a transformation of the entire space at once</li> </ul> |

Oehrtman, Carlson, and Thompson, 2008

## Function

### Action

- Composition is substituting a formula for  $x$
- Inverse is about algebra or geometry (switch  $x$  and  $y$ )
- Functions are conceived as static
- A function's graph is a geometric figure

### Process

- Composition is a coordination of two input-output processes
- Inverse is the reversal of the process
- Functions are conceived as dynamic where output changes with input
- A graph defines a mapping of input to output values

Oehrtman, Carlson, and Thompson, 2008

## Function

### Object

- Students can distinguish compositions (functions applied consecutively) from transforms (functions of functions)
- Students can work with function spaces (such as the solution space of a differential equation)
- Students understand multiple representations and properties of functions (e.g. even functions have cosine series expansions)

## Accumulation (Integration)

### Action

- Integration is a set of techniques (with a very odd notation)
- Integration finds a static area magically by computing an antiderivative

### Process

- Integration is adding many small contributions
- Integrals measure an area that changes dynamically as the range of integration changes

Inspired by Thompson and Silverman, 2008

## Accumulation (Integration)

### Object

- Integration is a function that takes a function as an input and produces another function as output
- Integration transforms properties of functions in a standard way

## Expected Growth

- Pre-calculus students are typically at an Action level.
- Calculus students need to develop a Process level understanding to be successful.
- By Differential Equations students are starting to reach the Object level.
- Linear Systems students probably should be at the Object level.

## Strengths of the Framework

- Widely used and understood (provides a good language for communication)
- Applicable to a broad range of concepts
- Is useful in analyzing interview and other data

## Weaknesses of the Framework

- Transitions between levels are unclear
- Original descriptions very “Bourbaki”
- Schema is not well defined
- Conflates conceptual development (action to process) with what we think of as transfer (ability to use multiple representations)

## Covariation

- Introduced by Carlson et. al. as a more natural (historical/physical) notion of function
- Think of a function as defining how two variables vary with each other rather than a set theoretic construct

## Action to Process for Function

| Mental Action                                                                                                                                                                                                                                                                                              | Behavior                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul style="list-style-type: none"> <li>• Coordinate one variable with another</li> <li>• Coordinate direction of change</li> <li>• Coordinate amount of change</li> <li>• Coordinate average rate of change with uniform increments of input</li> <li>• Coordinate instantaneous rate of change</li> </ul> | <ul style="list-style-type: none"> <li>• Labeling axes to show the two variables</li> <li>• Law of universal linearity (proportionality)</li> <li>• Plot secant lines and measure slope</li> <li>• Able to discuss how slopes change over uniform increments</li> <li>• Able to construct curve with clear concavity changes</li> </ul> |

Oehrtman, Carlson, and Thompson, 2008

## Schema Development Details

- **Intra** – individual can make coherent connections between particular constructs (specific functions, etc.)
- **Inter** – individual is able to group items together and think of specific connections as examples of general ones
- **Trans** – a fully coherent schema including a sense of the limits of where the schema applies
- This is NOT nearly as widely used or accepted as general APOS theory

## Transfer

- In APOS theory, the ability to coordinate two representations at once is often taken as a test of process-level understanding.
- While possessing such an ability may imply process level, our study asks if and when process level understanding leads to this ability.

## Reaction Questions

Reactant: Dong-Hai Nguyen

- Why didn't you mention Schema in the definitions of levels and the following examples?
- What level do you expect engineering students to possess and what level do they actually achieve in Calculus courses?
- Could you give an example on how we apply the APOS theory longitudinally along the REESE project?