

Spring 2009 Study Revisited

> 4 Interview sessions with 20 engineering students taking Engineering Physics 1.
> Problems in mechanics.
> Numerical, graphical, and functional representations.
> Key Math concept: Integral equals area under graph.
> Effect of sequence of problems on students' performance

Spring 2009 Study: Major Findings

- Students had difficulty in reading off and processing information from graphs to find the desired quantities.
> Students did not spontaneously recognize that integral was equal to the area under graph.
- Hints on mathematical or physical meaning were not as useful as those on basic issues such as units.

Spring 2009 Study: Major Findings

- The sequence of the problems presented to students affected their performance.
- Whether students were given the graphical problem or the functional problem first affected the average number of difficulties they had in an interview.
> Students seemed to gain representational competence as they progressed through our interviews.
- Students had less difficulties working with graphs and functions in the later interviews.

Fall 2009 Study

> 4 Interview sessions with 15 engineering students (same as those in Spring) taking Engineering Physics 2.
> Problems in Electromagnetism.
> Numerical, graphical, and functional representations.
> Involve a variety of mathematical concepts and skills: differentiation, integration, geometric reasoning, ...

Interview Problem Comparison

Spring I nterviews

- 3 problems each interview (interview 1 has 2 problems).
- Based on exam problems.
- Each graphical problem has one graph - what to do with graph.
- Minor change in context (i.e. spring vs. gun), no change in geometry.
- Probe basic understanding of the concepts/processes.

Fall I nterviews

- 4 problems in interview 1,3, 4, and 5 problems in interview 2.
- Based on homework problems.
- Each graphical problem has 3 4 graphs - appropriate graph to use.
- Significant change in geometry.
- Probe more deeply students' understanding and using of basic concepts/processes.

Research Design: Fall 2009

Interviews	Problem Sequences
Interview 1	$C_{1} R_{1} \rightarrow C_{1} R_{2} \rightarrow C_{1} R_{3} \rightarrow C_{2} R_{2}$ $C_{1} R_{1} \rightarrow C_{1} R_{3} \rightarrow C_{1} R_{2} \rightarrow C_{2} R_{2}$
Interview 2	$\mathrm{C}_{1} R_{1} \rightarrow C_{1} R_{2} \rightarrow C_{2} R_{1} \rightarrow C_{2} R_{3}$
Interview 3	$\mathrm{C}_{1} R_{1} \rightarrow C_{1} R_{2} \rightarrow C_{1} R_{3} \rightarrow C_{2} R_{1}$
Interview 4	$\mathrm{C}_{1} R_{1} \rightarrow C_{1} R_{3} \rightarrow C_{1} R_{2} \rightarrow C_{1} R_{2}$

Interview 1 - All Probs.

- General Impressions 1/7

Distribution of Charge

- Many students determine charge distribution based on the figure rather than from function or graphs.
- Some students have trouble in determining the sign of charges in Problem 2.
- The change in definition of θ (down from the vertical) is part of the difficulty.
- Many students did not spontaneously mention the symmetry of the distribution in their verbal descriptions,
- Although their drawings of the charge distributions were often symmetric.
- 12 -

Interview 1 - All Probs. - General Impressions
 Distribution of Charge

- Students use a variety of strategies for indicating charge density:
- varying the spacing between the charges
- drawing different sized clumps of charge at equal spacing
- drawing different size of pluses
- drawing pluses under the graph of charge density function.

Interview 1 - All Probs.

 - General Impressions
Magnitude of the Electric Field

- Several students wrote down/talked about the equation for Gauss' Law for finding the electric field (integrating E.dA).
- Most students knew that they needed a factor of cosine to pick out the vertical component of the electric field in problem 1.
- However, in problem 2, several students didn't include this factor because the charge density itself already had $\cos \theta$.
- Some students have difficulty with switching between integration variables $\mathrm{dq}=\lambda \mathrm{ds}$.
- Hints asking them to think about the definition of λ helped
- 15 -
many students.

Interview 1 - All Probs.
 - General Impressions

Direction of the Electric Field

- Most students were able to say that the electric field was vertically downward for Problems 1-3.
- Some students were able to talk about the horizontal components of the contributions from each side of the arch canceling.
- Some other students made "this is what the professor did in class" types of explanations.
- The direction of the electric field in Problem 4 tended to be much more difficult for students.
- Several students drew arched field vectors for Prob 4.

[^0]
Interview 1 - All Probs. - General Impressions 6/7

Magnitude of the Electric Field

- All students had trouble deciding which graph to use for Problem 3.
- Most students thought Graph 1 was the right one to use.
- Several students wanted to use Graph 2 because the area was easy to calculate.
- Discussion about how the integrand is related to the graph of a function whose area is the value of the integral helped most students.
- Several students did not know what the 'integrand' meant.

- Do not remember formula for resistance.
- Thought of ' A ' as surface area (with and without caps) or volume.

Interview 2 - Prob. 2 - General Impressions

- Integrated only the resistivity and multiplied by L/A.
- Hinted by the unit of resistance.
- Knew but could not apply the meaning of integration.
- Needed help to recognize the meaning of 'dx' in the integral.

Interview 2 - General Impressions

Problem 3
A conductor has diameter decreasing from D to d over its length L . The resistivity ρ is constant along the length of this conductor. Find the resistance of this conductor.

$\mathrm{C}_{1} \mathrm{R}_{1} \rightarrow \mathrm{C}_{1} \mathrm{R}_{2} \rightarrow \mathrm{C}_{2} \mathrm{R}_{1} \rightarrow \mathrm{C}_{2} \mathrm{R}_{3}$

- 24 -

Interview 2 - Prob. 3
 - General Impressions

- Knew that they had to integrate something, but were not sure what.
- Could not use geometric reasoning to find area of the resistor as a function of x.
- Hinted by a graph of diameter vs. x.
- Some students thought limits of integral were from D to d because diameter was changing.
- Almost all students needed to be given the result of integral.
- Only one student succeeded in using u-substitution to calculate the integral. Some students needed help adding/subtracting fractions.
- 25 -

Interview 2 - General Impressions

Problem 4
A conductor has diameter decreasing from D to d over its length L . The resistivity of this conductor along the x axis is $\rho(x)$ and its cross-sectional area is $A(x)$. The graphs of ρx) vs, $x, A(x)$ vs. x, $P(x), A(x) \mathrm{vs}, x$, and $p(x) / A(x)$ vs. x are given. Find the resistance of this conductor.

$$
\mathrm{C}_{1} \mathrm{R}_{1} \rightarrow \mathrm{C}_{1} \mathrm{R}_{2} \rightarrow \mathrm{C}_{2} \mathrm{R}_{1} \rightarrow \mathrm{C}_{2} \mathrm{R}_{3}
$$

| Interview 2 - Prob. 4 |
| :--- | :--- |
| - General Impressions $1 / 2$ |
| - Most students tried to find function of $\rho(x)$ from |
| the graph of to plug into the integral with |
| function of $\mathrm{A}(\mathrm{x})$ known from problem 3. |
| - The complicated integral forced students think of |
| using area under graph. |
| - Some students claimed that integral of division |
| of functions was division of each function's |
| integral. |
| |

Interview 2 - Prob. 4

 - General Impressions 2/2- Some students claimed to find area of graphs of $\rho(x)$ vs. x and $A(x)$ vs. x, then put those areas (numbers) into the integral.
- After such troubles as above, students were able to recognize that they should find area of the graph of $\rho(x) / A(x)$ vs. x.

Interview 2 - Prob. 5

 - General Impressions- Did not remember formula for capacitance of parallel-plate capacitor.
- Tried to set up an integral with 'dx' on the numerator.
- Did not spontaneously recognize series capacitors.
- Needed help converting sum to integral to find equivalent capacitance.

Interview 2 - General Impressions

Problem 5
A capacitor is made of two circular condicting plates of diameter I) and d. The permitivity s of the material filled between the plates is constant. Find the capacitance of this capacitor

- 35 -

Interview 3 - General Impressions

Problem 1

A cylindrical wire of radius R is carrying a current of density $j=j_{0}\left(j_{0}\right.$ is a constant). Find the magnitude of the magnetic field caused by the wire at a point P on its surface.

$$
\mathrm{C}_{1} \mathrm{R}_{1} \rightarrow \mathrm{C}_{1} \mathrm{R}_{2} \rightarrow \mathrm{C}_{1} \mathrm{R}_{3} \rightarrow \mathrm{C}_{2} \mathrm{R}_{1}
$$

- Students asked for formula of current density, although they could figure it out themselves.

Interview 3 - Change in Problems

- Students did not know where to start and what to do to solve the problems.
- It was impossible to help students solve the problems without making the interview a tutoring session.
- Add a picture of the cross section of the wire.
- Split each problems $1-3$ into two parts:
- A) Find the total current in the wire.
- B) Find the magnitude of the magnetic field at point P.

Interview 3 - Problems

Problem 2
A cylindrical wire of radius R is carrying a current of density $j=\alpha r$ (α is a constant, r is the distance from the center of the wire). Find the magnitude of the magnetic field caused by the wire at a point P on its surface.

$$
\mathrm{C}_{1} \mathrm{R}_{1} \rightarrow \mathrm{C}_{1} \mathrm{R}_{2} \rightarrow \mathrm{C}_{1} \mathrm{R}_{3} \rightarrow \mathrm{C}_{2} \mathrm{R}_{1}
$$

Interview 3 - Prob. 2 - General Impressions

- Integrated $\mathrm{j}(\mathrm{r})$ only and multiplied by the total area.
- Students seemed to be so familiar with integrals with $\mathrm{dx}, \mathrm{dr}, \mathrm{d} \theta, \ldots$ that it didn't make sense to them to integrate $\mathbf{j} . \mathrm{dA}$,
- Even though they remembered that, they failed to tell what dA meant.
- Students had difficulties finding dA.
- Hints on derivative of area with respect to r helped.

Interview 3 - Prob. 4

Problem 4
A tube carrying electric current expands uniformly over a distance L. The radius at the beginning of the tube is r, and at the end of the tube the radius is R. If the total current going through the tube is I, what is the average current density at location a quarter of the way down the tube (closer to the smaller end)?

Interview 3 - Prob. 4 - General Impressions

- Most students claimed to integrate the area, because area was changing.
- Needed help figuring out the function of diameter vs. x.

Interview 3 - All 4 Probs.

- Calculating B Field -- General Impressions
- Students tried to recall a formula for \mathbf{B}.
- Hinted on Ampere's law and given its expression.
- Students had a hard time 'unwrapping' the lefthand side of Ampere's law.
- Some students wrote the left-hand side as B. 2π R but failed (or used weak reasoning) to explain that result.
- Some students didn't know what 'ds' meant in the integral of Ampere's law.
- 41 -

Interview 4 - Prob. 1
Problem 1
The current in a series RLC circuit reaches its maximum amplitude of $I_{\max }=2 \mathrm{~A}$ when the driven angular frequency is $\omega_{0}=5 \times 10^{4} \mathrm{rad} / \mathrm{s}$. The emf amplitude is 100 V and the capacitance is $0.4 \mu \mathrm{~F}$. Find R and L .

$$
\mathrm{C}_{1} \mathrm{R}_{1} \rightarrow \mathrm{C}_{1} \mathrm{R}_{3} \rightarrow \mathrm{C}_{1} \mathrm{R}_{2} \rightarrow \mathrm{C}_{1} \mathrm{R}_{2}
$$

- 43 -

Interview 4 - Prob. 1

- General Impressions
- Students either did not remember formulae or did not know that current depended on ω and reached maximum when $\omega=\omega_{0}$ (resonance).
- Most students seemed not familiar with the resonance case (did not know that $X_{L}=X_{C}$ and $I_{\max }=E / R$ at resonance), so they could not simplify the problem.
- One student used the energy method to calculate L.

Interview 4 - Prob. 2
Problem 2
The current amplitude I versus driving angular frequency ω_{d} for a driven series RLC circuit is given in the graph below. The inductance is $200 \mu \mathrm{H}$ and the emf amplitude is 8.0 V . Find C and R .

$$
\mathrm{C}_{1} \mathrm{R}_{1} \rightarrow \mathrm{C}_{1} \mathrm{R}_{3} \rightarrow \mathrm{C}_{1} \mathrm{R}_{2} \rightarrow \mathrm{C}_{1} \mathrm{R}_{2}
$$

Interview 4 - Prob. 3
 Problem 3

The current amplitude $I(\omega)$ (in Amperes) of a series RLC circuit depending
on the driving angular frequency ω (in radian/second) is given as follow:
$I(\omega)=\frac{30 \mathrm{~V}}{\sqrt{(30 \Omega)^{2}+\left(\left(5 \times 10^{-1} \mathrm{H}\right) \times \omega-\frac{1}{\left(2 \times 10^{-1} \mathrm{~F}\right) \times \omega}\right)^{2}}}$
Find the resistance R, inductance L, capacitance C, resomance frequency ω_{0}. Find the resistance R, inductance L, cap
and maximum current amplitude $\mathrm{I}_{\text {nur }}$

$$
\mathrm{C}_{1} \mathrm{R}_{1} \rightarrow \mathrm{C}_{1} \mathrm{R}_{3} \rightarrow \mathrm{C}_{1} \mathrm{R}_{2} \rightarrow \mathrm{C}_{1} \mathrm{R}_{2}
$$

- 47 -

Interview 4 - Prob. 2 - General Impressions

- Most students chose the point of maximum current on the graph, but could not explain their choice.
- Some students did not know which point to choose or chose a random point on the graph to get I and ω.

Interview 4 - Prob. 3

- General Impressions
- The mapping task in this problem was very easy for all students.
- The units of quantities helped them to some extent.

Interview 4 - Prob. 3 - General Impressions - The mapping task in this problem was very easy for all students. - The units of quantities helped them to some extent.
-48.

Interview 4 - Prob. 4 - General Impressions 2/2

- The first few students were told that a function reached extreme values at zeros of its first derivative.
- Other students were given a graph with maximum and minimum, and asked to find the common property of those points.
- Students found two zeros of first derivative of $\mathrm{I}(\omega)$. Some thought that the larger ω gave larger current, others plugged each ω into $I(\omega)$ to find current and compared.
- Hinted on the change of slope when passing the maximum and minimum points.
- Only two students (out of 15) mentioned the "secondderivative test".

- Since students were not familiar with the resonance case, they did not know how to do this problem.
- When hinted that they needed to find ω that made $\mathrm{I}(\omega)$ maximum, they still could not think of the mathematical process to solve the problem.
- Hint on an analogous mathematics problem of finding value of x that made $f(x)$ maximum was helpful to some students but not to others.

- "Integral = area under graph" seemed to be obvious to students, but they had difficulties choosing the right graph to use.
- Thinking more deeply on the relation between graph and integral, they no longer chose a graph because it was easy to find area.
- Students knew meaning of mathematical operations (derivative, integration, ...) but could not apply that knowledge in the problems.
- Students seemed to automatically integrate anything that was changing.

Next Steps

- Phenomenographic analysis of transcripts.
- Investigate resources that students activated to solve the problems and the factors that affected their choice of resources.

Spring 2010 Plans

- More detailed literature review on multiple representations.
- Focus group interviews?
- E.g. Similar to Fran's Interviews
- Framework for explaining results: Candidates
- Conceptual Resources (Hammer)
- Cognitive Framework for Math in Phys (Tuminaro)
- Dynamic Transfer (Schwartz)

Thank You

- 56 -

[^0]: | Interview 1 - All Probs. - General Impressions

 Magnitude of the Electric Field

 - Nearly all students needed to be given the trig identity $\cos ^{2} \theta=1 / 2(1+\cos 2 \theta)$ in Prob 2.
 - Many students were able to compute the integral with this information.
 - One student suggested that the integral of a product is the product of each function's integral. -

