Exploring Students' Difficulties with Problems in Multiple Representations in Electromagnetism

Dong-Hai Nguyen

Physics Education Research Group

Kansas State University

PER Seminar 11-23-2009

This work is supported by NSF grant 0816207

Overall Goals

Investigate:

Common difficulties students encounter when solving physics problems in different representations.

- 2 -

> Hints that may to help students overcome these difficulties.

Spring 2009 Study Revisited

- > 4 Interview sessions with 20 engineering students taking Engineering Physics 1.
- > Problems in mechanics.
- Numerical, graphical, and functional representations.
- Key Math concept: Integral equals area under graph.

- 3 -

 Effect of sequence of problems on students' performance

- Students had difficulty in reading off and processing information from graphs to find the desired quantities.
- Students did not spontaneously recognize that integral was equal to the area under graph.
- Hints on mathematical or physical meaning were not as useful as those on basic issues such as units.

- 4 -

Spring 2009 Study: Major Findings 2/2

- > The sequence of the problems presented to students affected their performance.
 - Whether students were given the graphical problem or the functional problem first affected the average number of difficulties they had in an interview.
- Students seemed to gain representational competence as they progressed through our interviews.
 - Students had less difficulties working with graphs and functions in the later interviews.

- 5 -

Fall 2009 Study

- > 4 Interview sessions with 15 engineering students (same as those in Spring) taking Engineering Physics 2.
- > Problems in Electromagnetism.
- > Numerical, graphical, and functional representations.
- Involve a variety of mathematical concepts and skills: differentiation, integration, geometric reasoning, ...

- 6 -

Spring Interviews	Fall Interviews	
 3 problems each interview (interview 1 has 2 problems). 	 4 problems in interview 1,3, 4, and 5 problems in interview 2. 	
 Based on exam problems. 	 Based on homework problems. 	
 Each graphical problem has one graph – what to do with graph. 	 Each graphical problem has 3 – 4 graphs – appropriate graph to use. 	
 Minor change in context (i.e. spring vs. gun), no change in 	 Significant change in geometry. 	
geometry.Probe basic understanding of the concepts/processes.	 Probe more deeply students' understanding and using of basic concepts/processes. 	

Research Design: Fall 2009				
Interviews	Problem Sequences			
Interview 1	$C_1 R_1 \rightarrow C_1 R_2 \rightarrow C_1 R_3 \rightarrow C_2 R_2$			
	$C_1 R_1 \rightarrow C_1 R_3 \rightarrow C_1 R_2 \rightarrow C_2 R_2$			
Interview 2	$C_1R_1 \to C_1R_2 \to C_2R_1 \to C_2R_3$			
Interview 3	$C_1 R_1 \rightarrow C_1 R_2 \rightarrow C_1 R_3 \rightarrow C_2 R_1$			
Interview 4	$C_1 R_1 \rightarrow C_1 R_3 \rightarrow C_1 R_2 \rightarrow C_1 R_2$			
C ₁ : One type of	R ₁ : Numerical Representation			
Geometry	R ₂ : Functional Representation			
C ₂ : Different typ Geometry	R ₃ : Graphical Representation			
	- 8 -			

- 12 -

3/7

Interview 1 - All Probs.

electric field in problem 1.

integration variables dq = λ ds.

- General Impressions

Magnitude of the Electric Field

Several students wrote down/talked about the equation for Gauss' Law for finding the electric field (integrating **E.dA**).

However, in problem 2, several students didn't include this factor because the charge density itself already had $\cos\theta$.

Some students have difficulty with switching between

 Hints asking them to think about the definition of λ helped many students. - 15 -

Most students knew that they needed a factor of cosine to pick out the vertical component of the

4/7

– General Impressions

- 14 -

7/7

- General Impressions

- 18 -

5

Interview 3 – All 4 Probs. – Calculating **B** Field -- General Impressions

- Students tried to recall a formula for **B**.
- Hinted on Ampere's law and given its expression.
- Students had a hard time 'unwrapping' the lefthand side of Ampere's law.
- Some students wrote the left-hand side as $B.2\pi R$ but failed (or used weak reasoning) to explain that result.
- Some students didn't know what 'ds' meant in the integral of Ampere's law.

- 41 -

Interview 4 – Prob. 4 General Impressions 2/2 The first few students were told that a function reached extreme values at zeros of its first derivative. Other students were given a graph with maximum

- and minimum, and asked to find the common property of those points.
- Students found two zeros of first derivative of $I(\omega)$. Some thought that the larger ω gave larger current, others plugged each ω into $I(\omega)$ to find current and compared.
- Hinted on the change of slope when passing the maximum and minimum points.
- Only two students (out of 15) mentioned the "secondderivative test".

- 51 -

	Summary of students' difficulties in						
-	each representation						
	Number	Picture	Function	Graph			
	Algebraic computation	Associating symbols with the picture	Algebraic computation	calculus processes for finding features:			
	Associating symbols with quantities	Writing down a function from the picture:	Calculus computation	integral -> area			
	Units	Ex: Area as a function of distance	Appropriate application of formulae for special cases: If $f(x) = kx^2$, then $U(x) /= 1/2 kx^2$	derivative -> slope			
			Identifying integration variable	finding f_max			
			Units	estimating area/slope			
				units of area/slope			

- Phenomenographic analysis of transcripts.
- Investigate resources that students activated to solve the problems and the factors that affected their choice of resources.

- 54 -

Dynamic Transfer (Schwartz)

Comments

- Why did only 1 student think integral of product was product of integrals while several thought that for quotients?
 - Literature suggests that when students find questions difficult to comprehend the conceptual level of all their work can suffer.
- Can you relate errors by individual students across the interviews?
 - Take advantage of the longitudinal structure of your work to see how conceptions and misconceptions develop in individual students.
- You need a framework to allow you to trace conceptual growth over time
 - But you note this in your future plans.