ALT-Pathway: Technology for Studying Social and Cognitive Aspects of Learning

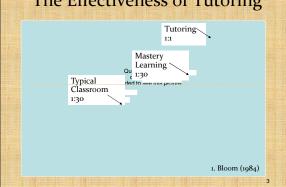
Chris Nakamura

K-State Physics Education Research Group: Sytil Murphy, Nasser Juma, Sanjay Rebello, Dean Zollman Carnegie Mellon Entertainment Technology Center: Scott Stevens & Mike Christel

Kansas State University Physics Education Seminar

Physics Education Research Group 5/1/2009

Project Overview


ALT-Pathway:

- Joint Project between K-State Physics Education Researchers and Carnegie Mellon Computer Science Researchers
- Seek to Develop a Web-based Tutoring System to Study and Improve Learning.


Topics for Discussion

- Motivation for Studying Tutoring
- Connections to Educational Theories
- Developing our Synthetic Tutor
- Research Opportunities
- 5. Summary and Future Work

The Effectiveness of Tutoring

The Effectiveness of Tutoring

This Prompts Several Questions...

- 1. Why is tutoring so much more
- What is holding the bottom students back?
- 3. Can we obtain similar results without human tutoring, which appears cost-prohibitive?

Operational Definition: A Tutor is someone whose domain knowledge is good, but may be pedagogically untrained, who provides instruction, often informally.

Why is Tutoring So Effective?

Logically we might infer that tutoring lets the tutor:

- · Recognize students' understanding & misconceptions
- · Provide personalized scaffolding
- Fine-tune the interaction in general

Why is Tutoring So Effective?

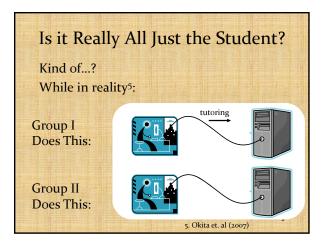
Research indicates that tutoring lets the student:^{2,3}

- Construct explanations
- Challenge the veracity of those explanations
- Learn in a socially interactive manner

2. Chi et. al, (2001), 3. Chi et. al (2004)

Why is Tutoring So Effective?

Meanwhile the tutor:2,3


- · Failed to correctly assess understanding
- · Failed to correctly assess misunderstanding
- · Often missed opportunities to provide scaffolding

Bottom line: Tutoring is a more student-centered instructional method.

(Matches up with our Constructivist perspective⁴)

2. Chi et. al, (2001), 3. Chi et. al (2004), 4. Inhelder & Piaget (1958)

Is it Really All Just the Student? Kind of...? An interesting V.R. tutoring experiment⁵: Group I Thinks This: Group II Thinks This:

Is it Really All Just the Student?

Kind of ...?

The result⁵:

People appear to learn better if they perceive social interaction.

(Connection to Vygotsky's social constructivism⁶...)

But more work can be done in this area...

5. Okita et. al (2007) 6. Vygotsky (1978)

Research Motivations

- •Tutoring is a relatively intimate teaching method.
- •Just because tutors need not accurately gauge students' learning doesn't mean they *cannot*.
- •Tutoring is inherently social, but in a complex way

Research Motivations

- •Tutoring is a relatively intimate teaching method.
- •Just because tutors need not accurately gauge students' learning doesn't mean they *cannot*.
 - → Gives direct access to students' knowledge construction processes (Mirrors Interview)
- •Tutoring is inherently social, but in a complex way
 - → This facet alone warrants further study

12

Why on a Computer?

Instruction advantages

- Computers are always available for help and cheaper than human tutors.
- Research advantages:
- Computers can log detailed interactions for 1000's of students.
- Computers provide reproducible stimuli and responses

Instruction disadvantages:

- Computers have no intelligent recognition of success or failure Research disadvantages:
- Computers cannot intuit when to ask probing questions or tune protocols on the spot

A computerized tutoring system may provide a useful supplement to human instruction *and* human data collection (interviews).

Developing A Synthetic Tutor

A Conceptualization of Tutoring:

Content

Interface

Student

Developing the Lessons (Script)

- 3-stage learning cycle^{7,8}
- Teach Newton's laws (3 lessons)
- Use video to emulate hands-on measurement
- Combine objective & subjective responses
- Must have online response collection

7. Karplus & Butts (1977) 8. Zollman (1990)

Developing the Interface

CMU's Synthetic Interview (SI) Technology9:

- Matches natural language questions to prerecorded video responses
- Can simulate simple conversations
- Has previously been employed for educational purposes

9. Stevens et. al (2007)

Developing the Interface

Selected Three Tutors:

- Good domain knowledge => Provide Content
- Prior teaching experience
- Interest in physics education

Connecting Interface & Content

The SI interface maps students' questions onto a master list of questions

→ We need a list of questions & responses

19

Connecting Interface & Content

The SI interface maps students' questions onto a master list of questions

→ We need a list of questions & responses

Based on student interviews we've generated ~80 relevant content questions & videotaped responses from our tutors

Need to produce a database of variations ~4000 for the SI system to search

Connecting Interface & Content

Potential Problem:

Failure matching questions & answers may frustrate (students may have low threshold)

Current Effort:

Working with CMU test tool to maximize the correct match-ups.

21

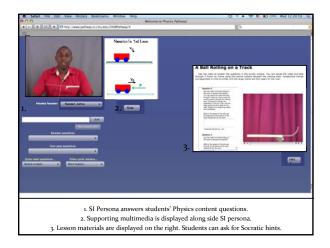
Connecting Interface & Content

Potential Opportunity:

Tutors often use sketches, and written examples to aid students

We can also use support materials, but the Internet allows the addition of videos or applets as well

22


Connecting Interface & Content

Potential Opportunity:

Tutors often use Socratic Dialogue to help students learn

We can try to simulate Socratic Dialogue by using appropriate "question hints" which they can ask for.

Accessibility

Important Questions

- How does Internet access vary by geography, and other contextual parameters?
- 2. How do students' technical capabilities vary? (How do we measure it?)
- 3. How do we produce a tutor that is useful for everyone?

26

Testing the Synthetic Tutor

Four Facets to Test

- 1. Test the Content
- 2. Test the Lessons
- 3. Test the Interface
- 4. Test the System

27

Testing the Synthetic Tutor

Four Facets to Test

- 1. Test the Content Continuous process
- 2. Test the Lessons Our Current Focus
- 3. Test the Interface Our Current Focus
- 4. Test the System For another talk

28

Testing the Lessons

Key Ideas:

- · Students must complete them un-guided
- Lessons must use calculation & explanation as tests of understanding
- The lessons must probe deep understanding

Testing the Lessons

Test Groups

Fall 2008:

15 High School Physics Students in AZ

Spring 2009:

30 High School Physics Students in KS

89 College Algebrab-based Physics Students

30

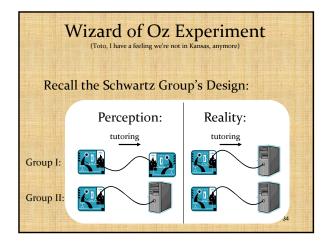
Preliminary Observations

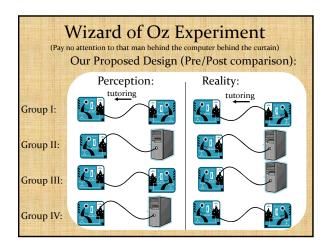
- Students are familiar with kinematics concepts but still need scaffolding
- Feedback is probably necessary to inform students when their numerical answers are far off
- Students explanations can reflect memorized information that contradicts their calculations and observations
- Students need a lot of encouragement to explain their reasoning, but some do explain in detail.

A detailed analysis is necessary...

31

Evaluating Socratic Hints


Spring 2009


~100 College students were surveyed to assess utility and abstraction of possible hints

Students who had already worked with the lesson materials were selected

Data is hot of the presses

Wizard of Oz Experiment

Challenges to meet:

- · Technology Challenges: The interactions cannot be perceptibly different
- Find/Develop Pre/Post Test (FCI¹⁰?)
- · Content Challenges: Lessons may be too long
- Standard Volunteer Recruitment Issues (This study requires 40 people minimum)

Questions Answered:

- Can we expect to reap benefits similar to real tutors with video?
- Is the effect observed by Okita purely psychological or also external to the subject?
- · Do people respond differently to video as compared to V.R. avatars?

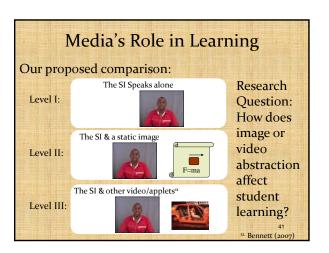
10. Hestenes et. al (1992)

Media's Role in Learning

Recent research indicated11:

- ·Multimedia improved student learning over a popular textbook
- •An image free script containing similar content also improved learning over the textbook (thought not as much)

11. Stelzer et. al (2009) 37


Media's Role in Learning

Recent research indicated11:

- •Multimedia improved student learning over a popular textbook
- •An image free script containing similar content also improved learning over the textbook (though not as much)
- →Optimization is important 11. Stelzer et. al (2009) 38

Media's Role in Learning Our proposed comparison: The SI Speaks alone Level I: The SI & a static image Level II: The SI & other video/applets1 Level III:

Media's Role in Learning Our proposed comparison: The SI Speaks alone Research Level I: Question: Which level best The SI & a static image promotes Level II: learning? The SI & other video/applets1 Level III: 12. Bennett (2007)

Summary

- · A synthetic tutor may be useful both for instruction and studying learning
- · Progress has been made toward that goal
 - Lessons have been written & undergone a first test
 - First 80 video responses recorded for 3 tutors
 - Static image supplemental materials are made
 - Work has begun on generating the SI master question list
- · Several interesting research designs have been presented

42

Ongoing Efforts

- · Detailed analysis of our HS & College data
- · Record static image video responses
- Develop video supplemental materials & record responses
- See the prototype system (this summer!)
- Establish H.S. & college collaborations
- Develop technology for Wiz. of Oz exp.
- Study student web access and technological sophistication in depth

43

References

- Bloom, B. S. (1984), "The 2-sigma problem: The search for methods of group instruction as effective as one-to-one tutoring," Educational Researcher, 13(6), 4-16.

 Chi, M. T. H. (1996), "Constructing self-explanations and scaffolded explanations in tutoring," Journal of Applied Cognitive Psychology, 10(S), S33-S49

 Chi, M. T. H., Siler, S. A., and Jeong, H., (2004), "Can tutors monitor students' understanding accurately?," Cognition and Instruction, 22(3), 363-38

 Inhelder, B. and Piaget, I. (1958), The growth of Jogical thinking for childhood to adolesence. New York: Basic Books

 Okita S. Y., Bailenson, J., and Schwartz, D. L., (2007) "The mere belief of social interaction improves learning," Cognitive Science Conference

 Vygotsky, L. S. (1978), Mind in Society: The Development of Higher Psychological Processes.

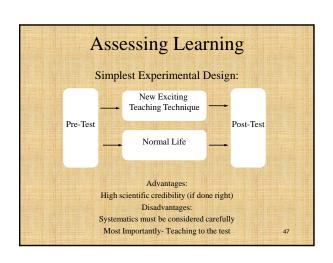
 Boston: Harvard University Press

 Karplus, R., and Butts, D. P. (1977), "Science teaching and the development of reasoning," Journal of Research in Science Teaching, 14(2), 169-175

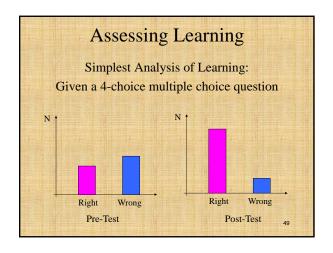
 Zollman, D., (1999), "Learning cycles for a large enrollment class," The Physics Teacher, 28, 20-25

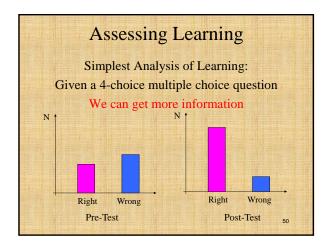
 Stevens, S., Zollman, D., Christel M., and Adrian B., (2007) "Virtual Pedagogical Agents as Aids for High School Physics Feacher," Immensional Conference on Interactive Computer-aided Learning David Hestense, Malcom Wells, and Gregg Swackhammer, 1992). "The Force Concept Inventory," The Physics Teacher, 30, 141-158

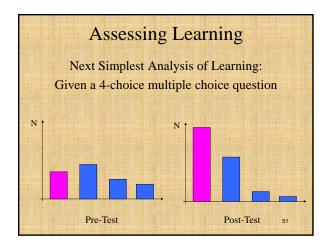
 Stelzer, T., Gladding, G., Mestre, J. & Brookes, D.T. (2009). "Comparing the efficacy of multimedia modules with traditional textbooks for learning introductory physics content." American Journal of Physics, 77(2), 184-190

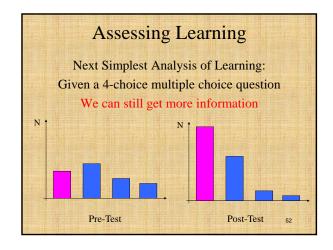

 Andy Bennett, "I-Pod Math," Kansas State University Physics Education Seminar Unpublished.

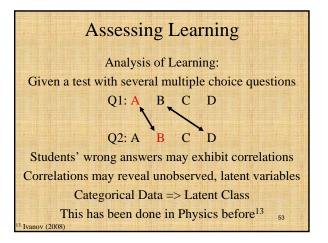
 I. Ivanov, Private Communication


Jacki's Discussion Questions


- Is the synthetic interview authentic enough to get buy-in from students?
- How much is too much when adding additional content alongside the SI?
- How would the use of eye-tracking software benefit this study (if at all)?
- If Chris et al. see a desired result with this context, would the results generalize to other content areas in physics?


Emergency Back-Up Slides 46





Assessing Learning

Our Ultimate Goal: Use Latent Class Analysis to

- Observe latent classes of understanding in High School & College Physics students
- Characterize the probability of a student transitioning between these classes as a result of our various instructional materials
- 3. Use these results to evaluate the efficacy of our synthetic tutor

54

Matching Up Questions

You type: How does an object move when it feels no net force? The List Contains:

- 1. What is the behavior of an object with zero net force?
- 2. What is the acceleration of an object with zero velocity?
- How does an object move when it feels no friction?
- . What is the acceleration of an object moving in a circle?

55

Matching Up Questions

You type: How does an object move when it feels no net force? The List Contains:

- 1. What is the behavior of an object with zero net force?
- 2. What is the acceleration of an object with zero velocity?
- 3. How does an object move when it feels no friction?
- 4. What is the acceleration of an object moving in a circle?

56

Matching Up Questions

You type: How does an object move when it feels no net force? The List Contains:

- 1. What is the behavior of an object with zero net force?
- 2. What is the acceleration of an object with zero velocity?
- 3. How does an object move when it feels no friction?
- 4. What is the acceleration of an object moving in a circle?

The system got it wrong because:

- 1. Common words are scarce in the search list (how, move, etc...).
- 2. Too few variations on the questions were used (Shallow list)

57

Matching Questions

List Development

- 1. Make a master list of questions
- Query it many times (count successes & failures)
- 3. Refine