Our Model of Transfer & Applications to Our Research

Sanjay Rebello
(srebello@phys.ksu.edu)

Department of Physics

Supported in part by NSF Grants
REC-0133621, REC-0087788

Past Collaborators
Alicia Allbaugh
Paula Engelhardt
Kara Gray
Zdeslav Hrepic
Salomon Itza-Ortiz
Dean Zollman

Our Research Theme:
Student Thinking of Real-World Contexts

Why study real-world contexts?
Real-world contexts ...
- motivate students to learn physics.
- promote inductive reasoning – principles developed from observations.
- provide situations for design-based problem solving.

Our Research Questions

- How do students construct and transfer knowledge when thinking about real-world contexts?
- What factors mediate these processes?

Which Real-World Contexts?

Contexts chosen based on following criteria...
- Have all students experienced it in some way?
- Is it amenable to hands-on exploration?
- Are underlying principles in clear view?
- Are principles transferable to other contexts?

In spite of these criteria...
Most students have ...
- Seldom given prior thought to how real-world devices work, although they have used them.
- Do not have well formed ideas about the working of these devices.
- Make up their thoughts on the spot, when asked how the devices work.
Example: Interview on Optic Fibers

From what I understand, it’s a, it’s almost a series of reflections. … I’m pretty sure it’s reflected light all the way through. …

I think just by a series of angled, um, I don’t want to say mirrors, but it’s got to be mirror-like, a mirror-like substance. … I guess if, if you did just enclose light in, … uh, it can’t be glass ‘cause it’s flexible. … I don’t know how you would do it. …

I think just by a series of angled, um, I don’t want to say mirrors, but it’s got to be mirror-like, a mirror-like substance. … I guess if, if you did just enclose light in, … uh, it can’t be glass ‘cause it’s flexible. … I don’t know how you would do it. … maybe it wouldn’t need to reflect if it, uh, if it, you can’t escape the, the insulator, right? … maybe it can just, shwooo, travel right through. Maybe it doesn’t need to reflect. …

I think just by a series of angled, um, I don’t want to say mirrors, but it’s got to be mirror-like, a mirror-like substance. … I guess if, if you did just enclose light in, … uh, it can’t be glass ‘cause it’s flexible. … I don’t know how you would do it. … maybe it wouldn’t need to reflect if it, uh, if it, you can’t escape the, the insulator, right? … maybe it can just, shwooo, travel right through. Maybe it doesn’t need to reflect. … I’ve seen, it almost looks like … it’s a plastic substance, I know, cause they use it for now, uh, that, that cable for computers and things, …
Implications for Physics Education Research

- Stability of knowledge is questionable.
- Framework: p-prim4/resource5 rather than coherent mental model.
- Difficult to probe student knowledge without affecting it.
- Focus on dynamics of knowledge transfer & construction rather than state of knowledge.

'Strategic' Views of Transfer

- Identical elements must exist between contexts.
- Knowledge must be encoded in a coherent schema.
- Researcher pre-decides what must transfer.
- Static one-shot assessment.
- Focus mainly on students' internal knowledge.
- Transfer is rare.

What is Transfer?

Ability to use what you have learned in one situation in a different situation.

However, in light of earlier discussion...

Do we need to rethink what transfer actually means?

E.g. McKeough, Lupart & Marini (1995)

'Traditional' Views of Transfer

- (Re)construct knowledge in new context.
- Knowledge transfers in pieces.
- Researcher examines anything that transfers.
- Dynamic, real-time assessment.
- Focus also on variety of mediating factors.
- Transfer is ubiquitous.

E.g. Gick & Holyoak (1980); Reed & Ernst (1974), Thordike (1906)

E.g. Gick & Holyoak (1980); Reed & Ernst (1974), Thordike (1906)
What Affects Transfer?
- The Mediating Factors

- **Expectations** about new situation.
 - e.g. “Knowledge of mathematics expected in this class.”

- **Epistemology**: Beliefs about nature of knowledge.
 - e.g. propagated (from authority) vs. fabricated (by oneself).

- **Motivation** to apply knowledge.

- **Social interactions**.

Dynamic Transfer

Our Interview Data
(5 different projects & researchers)

Our Model of Dynamic Transfer

Other Contemporary Views

Underpinnings of Model

- ‘Two-level framework’
 - **Associations** between knowledge elements.
 - **Control** of these associations.

Elements of Model

Tools

- **Source Tool**: Dormant knowledge activated to make sense of a situation.
- **Target Tool**: Attributes of a situation that a learner ‘read out’ from the external inputs provided.
- **Epistemic Meta-Tool**: Epistemic Resources that a learner uses to exercise executive control over process in working memory.

Processes

- **Read-Out**: Recognizing relevant information in from the external input.
- **Activation**: Retrieval of source tools or epistemic meta-tools from long term memory.
- **Association**: Interconnecting various tools in the working memory e.g. inferential, causal, analogical inductive, deductive.
Using the Model

Examining interview data based on the model

Example: Interview on Optic Fibers

From what I understand, it’s a, it’s almost a series of reflections. ... I’m pretty sure it’s reflected light all the way through. ... I think just by a series of angled, um, don’t know how you would do it. ... maybe it wouldn’t need to reflect if it, uh, if it, you can’t escape the, the insulator, right? ... maybe it can just, shwooo, travel right through. Maybe it doesn’t need to reflect. ... I’ve seen, it almost looks like ... it’s a plastic substance, I know, cause they use it for now, uh, that, that cable for computers and things, ... but I don’t ... know what they use; and it’s gotta be reflecting somehow. I don’t know.

Knowledge is Created

Target Tool:
What she notices

Source Tool:
Not glass b/c flexible

Example: Interview on Optic Fibers

From what I understand, it’s a, it’s almost a series of reflections. ... I’m pretty sure it’s reflected light all the way through. ... I think just by a series of angled, um, I don’t want to say mirrors, but it’s got to be mirror-like, a mirror-like substance. ... I guess if, if you did just enclose light in, uh, it can’t be glass ‘cause it’s flexible. ... I don’t know how you would do it. ... maybe it wouldn’t need to reflect if it, uh, if it, you can’t escape the, the insulator, right? ... maybe it can just, shwooo, travel right through. Maybe it doesn’t need to reflect. ... I’ve seen, it almost looks like ... it’s a plastic substance, I know, cause they use it for now, uh, that, that cable for computers and things, ... but I don’t ... know what they use; and it’s gotta be reflecting somehow. I don’t know.
Example: Interview on Optic Fibers
From what I understand, it’s a, it’s almost a series of reflections. I’m pretty sure it’s reflected light all the way through. I think just by a series of angled, um, I don’t want to say mirrors, but it’s got to be mirror-like, a mirror-like substance. I guess if, if you did just enclose light in, uh, it can’t be glass ‘cause it’s flexible. I don’t know how you would do it. Maybe it wouldn’t need to reflect if it, uh, if it, you can’t escape the, the insulator, right? I guess it can just, shwooo, travel right through. Maybe it doesn’t need to reflect. I’ve seen, it almost looks like it’s a plastic substance, I know, cause they use it for now, uh, that, that cable for computers and things, but I don’t know what they use, and it’s gotta be reflecting somehow. I don’t know.

Also...

Our model can be used to describe the concept construction process.
Through successive activation/deactivation of associations between tools, a complex knowledge structure may be constructed and stored in long term memory. Structure (of tightly associated tools) may be activated in future as a single entity (model).

Eventually...

- Through successive activation/deactivation of associations between tools...
- ...a complex knowledge structure may be constructed and stored in long term memory.
- Structure (of tightly associated tools) may be activated in future as a single entity (model).

Conceptual Change Processes

- Assimilation: New 'tool' adds to existing structure without fundamentally changing it.
- Accommodation: New 'tool' changes existing structure.

Our Model of Transfer

- Transfer is the dynamic creation of associations between knowledge elements ('tools').
- Associations are controlled by the learners' epistemic mode.
- Epistemic mode is activated by external inputs.
Commonalities with Other Models

1. **Mestre, Dufresne et. al.**
 - Dynamic process leading to activation and application of knowledge in response to context.
 - ‘Read-out’ filter: Noticing relevant info. in situation.
 - ‘Expectation filter: Activating and applying knowledge pieces to make inferences.

2. **Hammer, Redish, Elby et. al.**
 - Locally coherent, mutually associated resources activated together based on learner’s epistemic frame.
 - Transfer occurs when learner reaches similar state in new context.

Schwartz, Bransford et. al.
- Transfer is prep for future learning.
- ‘Transfer In’: during knowledge construction.
- ‘Interpretive’ (knowing with): Framing the situation.

disSessa & Wagner
- ‘Class A’ Transfer: Developed knowledge (co-ord. class).
- ‘Class C’ Transfer: Small-grained knowledge activation.
- ‘Class B’ Transfer: Transition between Class A and C.

Applications to Our Research

- What target tools do they read out?
- What source tools do they activate?
- What assoc. do they construct b/w these?
- In what epistemic state do they frame the situation?
- What external inputs prime them into this state?

Example from ‘Movie Physics’

- Movie clip: ‘Speed’
- Question / Hint
- Demo with toys
- Explain using physics terms.
- Explain in own words, what I figure
- Projectile motion: no vertical speed.
- Never seen this happen

Example from ‘Friction’ study

- Question / Hint
- Gauge block activity
- Talk w/ other student
- Use what I learned in class. Try to figure out from activity.
- Notice harder to move on smoother surface.
- No ‘tool’ from class to relate to?
- Relate to transparency on paper.

Applications to Our Research

- What questions to ask?
 - How to phrase questions to activate desired e-mode?
- What knowledge building experiences to provide?
 - What hands on activities, demos to use?
 - How to generate cognitive dissonance?
- How to analyze data?
 - What students actions and interactions to focus on?
 - What coding rubric to use?
Implications for Curriculum Design

Typical Methodology

- Determine students’ prior knowledge
- Design interventions to change knowledge

Clinical Interviews → Curriculum Design & Development → Pilot- & Field-Testing

Alternative Methodology

- Explore external inputs that activate productive epistemic modes and useful tools and processes leading to knowledge construction
- Determine ‘tools’ that students intuitively use & what activates these tools

Teaching Interviews → Curriculum Design & Development → Pilot- & Field-Testing

* Steffe (1983); Steffe & Thompson (2000)

What is a Teaching Interview?

- ‘Mock’ instruction:
 - Attempts to change student knowledge.
 - Rich setting for students to express themselves.
 - Variety of instructional strategies.
 - Involve groups of up to three students.

- Researcher’s Role:
 - Observer.
 - Instructor.

What is a Teaching Interview?

Benefits of Teaching Interviews

- ‘Mock’ instruction:
 - Attempts to change student knowledge.
 - Rich setting for students to express themselves.
 - Variety of instructional strategies.
 - Involve groups of up to three students.

- Researcher’s Role:
 - Observer.
 - Instructor.

Provide insights about ...

- Dynamics of knowledge construction & transfer.
- Effectiveness of materials & strategies.
- Student interactions with...
 - instructional materials,
 - peers, and
 - instructor.

Teaching Interviews are a useful paradigm for research and curriculum development.

SUMMARY

- Perspectives of Transfer:
 - Dynamic.
 - Student-centered.

- Our model of Transfer:
 - Consistent with new perspectives.
 - Identify & characterize dynamic transfer.
 - Can guide curriculum dev. & instruction