Modeling of Friction at the Microscopic Level

Edgar G. Corpuz
Physics Department
Kansas State University

*Supported in part by NSF Grant REC-0133621

Why modeling?
- Make students think like scientists
- Physicists use models

Why microscopic modeling?
- Need to integrate nanoscience education
- Nanotechnology occurs in the microscopic realm.
- Few existing studies on students’ microscopic modeling.

Rationale

Phase II - Dynamics of Model Construction

Research Questions

• What are the variations in the models of introductory college physics students regarding microscopic friction?
• How do students construct their ideas as they are provided with scaffolding activities to help them achieve the target ideas?
• Is the developed material effective in helping students adopt better models of friction at the microscopic level?

Theoretical Framework

Constructivist Perspective

- Students’ minds are not blank slate
- Prior knowledge, skills and beliefs affect students’ thinking and learning
- Learning occurs as a result of interaction with the environment
- Learning occurs within a Zone of Proximal Development (ZPD)\(^1\)

\(^1\)Vygotsky (1976)

Phase I - Methodology

Semi-structured Clinical Interview

- 2 sessions/student (one hour each)
- Main Issues:
 - Surface at Different Length Scales
 - Cause of friction at the atomic level
 - Lubricating Mechanism of Oil
 - Differences between static and kinetic friction
 - Effect of Surface Roughness
Phase I - Participants

<table>
<thead>
<tr>
<th>Major</th>
<th>No. of Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mech. Engineering</td>
<td>4</td>
</tr>
<tr>
<td>Secondary Education</td>
<td>3</td>
</tr>
<tr>
<td>Computer Science</td>
<td>1</td>
</tr>
<tr>
<td>Marketing</td>
<td>1</td>
</tr>
<tr>
<td>Microbiology</td>
<td>1</td>
</tr>
<tr>
<td>Undecided</td>
<td>1</td>
</tr>
</tbody>
</table>

Total 11

- enrolled in Conceptual Modern Physics
- had at least one semester of college physics

Phase I - Participants

Model-Eliciting Activities

Feeling of Surfaces

Phase I - Data Analysis

Model-Eliciting Activities

Pulling of Wooden Block Across Different Surfaces

Sample Questions:
- Why is the force greater when you pull the block across the sandpaper surface than on the wooden plank?
- Please explain what is going on between the surfaces at that (previous sketches) level?

Sample Questions:
- Could you please sketch what a 10-cm length of the surface would look to you?
- If we consider 1/100 of your sketch, zoom in and magnify that part 100 times, what would that portion look to you?

Model-Eliciting Activities

Making Sketches

Sample Questions:
- Could you please sketch what a 10-cm length of the surface would look to you?
- If we consider 1/100 of your sketch, zoom in and magnify that part 100 times, what would that portion look to you?

Model-Eliciting Activities

Sample Questions:
- Could you please sketch what a 10-cm length of the surface would look to you?
- If we consider 1/100 of your sketch, zoom in and magnify that part 100 times, what would that portion look to you?

Sample Questions:
- Why is the force greater when you pull the block across the sandpaper surface than on the wooden plank?
- Please explain what is going on between the surfaces at that (previous sketches) level?

Model-Eliciting Activities

Asking “what if” questions

- What happens to the friction force if
 - surfaces are atomically flat?
 - there’s no gravity?
 - there’s oil in between the surfaces?

Phenomenographic Approach

- Look for variations in the models.
- Categories emerged from students’ responses.
 (Inter-rater reliability of categories is at least 80%)

Themes emerge.

2Marton (1986) 3Svennson & Theman (1983)

Thematic Analysis

- Look across the different categories.
- Themes emerge.

4Bogdan & Bilken (1998)
Friction is due to mechanical interactions involving the meshing up of bumps and valleys, which results in rubbing of atoms.

Electrical Bonding (3 students)
- Friction is the force that is needed to break the bonds between the atoms of surfaces that come into contact.

Intertwining/Interlocking of atoms (5 students)
- Friction is the force needed to pull atom over the bumps due to intertwining or interlocking of atoms.

Rubbing/Sliding of Atoms (5 students)
- Friction is the rubbing or sliding of an atom past one another.

VARIATIONS IN THE MODELS

Establishing Target Ideas

STUDENTS’ IDEAS

EXPERTS’ IDEAS

LITERATURE

TARGET IDEAS

Target Ideas
(Relevant to this Talk)

- Friction is due to electrical interactions.
- Friction is dependent on the real area of contact.
- Friction varies with roughness as shown below:

\[
\text{Friction} \quad \text{Roughness of Both Surfaces}
\]

Research Questions

- What are the variations in the models of introductory college physics students regarding microscopic friction?
- How do students construct their ideas as they are provided with scaffolding activities to help them achieve the target ideas?
- Is the developed material effective in helping students adopt better models of friction at the microscopic level?

Phase II - Methodology

- Teaching Interview
 - 'Mock' instruction
 - Two one-hour session/student
 - Videotaped

- Phenomenographic Approach

Phase II - Participants

<table>
<thead>
<tr>
<th>Course</th>
<th>No. of Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concept-Based Physics</td>
<td>3</td>
</tr>
<tr>
<td>1st Semester Algebra-Based Physics</td>
<td>4</td>
</tr>
<tr>
<td>2nd Semester Algebra-Based Physics</td>
<td>5</td>
</tr>
<tr>
<td>1st Semester Calculus-Based Physics</td>
<td>4</td>
</tr>
<tr>
<td>2nd Semester Calculus-Based Physics</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
</tr>
</tbody>
</table>
Model Building

Feeling & Sketching of surfaces

Graphing of Friction vs. Surface Roughness

Wooden Surface-Sandpaper

Metal Blocks Activity

Papers & Transparency

??COGNITIVE DISSONANCE??
Can’t explain phenomena at hand using present model
Phase II - Findings

- The metal block and transparency activity seemed to activate and strengthen the association of friction with increasing smoothness.

Phase II - Conclusion

- The scaffolding activities appeared to facilitate efficient control of the activation of appropriate associations to explain his observations and construct a new model of microscopic friction.

The Developed Instructional Material

- Incorporates learning cycle
- Encourages collaboration
- Builds from students' prior knowledge
- Uses inexpensive materials
- Incorporates hands-on activities
- Activities are sequenced for guided discovery
- Minimal teacher involvement

The Developed Instructional Material

- Writing of initial ideas
- Concept introduction
- Exploration
- Application
- Amonton's Laws
The Developed Instructional Material

- Feeling & Sketching of Surfaces
- Sliding of Surfaces
- Sliding papers across the transparency
- Sliding papers across the transparency rubbed with fur
- Sketching Pairs of Sliding Surfaces

Concept Introduction
- real area of contact
- friction on very smooth surfaces can be large
- role of electrical interactions

Application
- relating the activities

Research Questions

Phase III

- What are the variations in the models of introductory college physics students regarding microscopic friction?
- How do students construct their ideas as they are provided with scaffolding activities to help them achieve the target ideas?
- Is the developed material effective in helping students adopt better models of friction at the microscopic level?

Phase III - Methodology

Qualitative Evaluation
- Small Group Activity
- Kept track of students’ conceptual progression
- open-ended questions
- student discussion
- Generated Teachers’ Guide

Quantitative Evaluation
- employed pretest-posttest control group design
- Control Group (24 students)
 - Watched an hour long videotaped lecture
- Experimental Group (32 students)
 - Used the developed instructional material (1 hour)
- used multiple-choice questionnaire
 - Content-validated
 - Reliability index ()

Phase III - Results

CONTROL vs. EXPERIMENTAL

<table>
<thead>
<tr>
<th></th>
<th>PRE-TEST</th>
<th>POST-TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTROL</td>
<td>31%</td>
<td>30%</td>
</tr>
<tr>
<td>EXPERIMENTAL</td>
<td>47%</td>
<td>69%</td>
</tr>
</tbody>
</table>

p value (Control vs. Experimental Gain) ≤ 0.0001 (two-tailed)

Model for Curriculum Development

PHASE 1: FACT FINDING
- Identify students’ existing models
- Develop teaching interview protocol
- Design preliminary set of scaffolding activities

PHASE 2: TEACHING INTERVIEWS
- Investigate dynamics of model construction
- Develop and validate instructional material

PHASE 3: PILOT TESTING
- Evaluate effectiveness of instructional material
Future Plans

- Research
- Curriculum Development
- Instruction

Future Research Directions

- Multi-tier teaching experiments
 - Involve pre-service and in-service science teachers

Involvement of Science Teaching Majors

- Train students about teaching interviews
 - Exploring literature & discussing with other researchers
 - Observe and critique teaching interview sessions (actual or videotaped)
- Conduct teaching interviews on a specific topic of interest
 - Gain first hand experience about how students think
- Develop & pilot test curriculum materials

Issues for Further Investigation

- What scaffolding inputs are productive in helping students develop a better model of a phenomenon at the microscopic level?
- What are the variations in the conceptual trajectories of students at different points in the model-building process?
- What formative assessment do we need to give students as they go through the model-building process?

Multitier Teaching Experiment*

Future Plan (Research, Curriculum & Instruction)

RESEARCHER LEVEL TEACHING EXPERIMENT

- Develop, Validate, Pilot Test and Implement Curriculum Materials
- Train teachers how to use the instructional materials
- Train teachers how they can better scaffold students learning to maximize their learning.
- Identify instructional support needed by teachers.

Contact Information

Edgar G. Corpuz

e-mail: eddy@phys.ksu.edu

Thank You!!!