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Energy
Swinging back and forth (Figure 9-1). The motion seems endless in its repeti­
tion . But, as young children and their parents qUickly learn, the sWing's mo­
tion is neither spontaneous nor enduring. Left to itself, a swing hangs motion­
less, the downward force of gravity balanced by the upward force of the rope.
We have to pull it back or push it forward to get it going. Once moving, the
swing constantly exchanges height for velocity. At the top, the swing stops­
momentarily suspended in midair. Remember the sensation? Increasing speed
as it descends, the swing reaches its maximum speed as it hits bottom, only to
slow back down to zero again at the top . Each time the swing moves upw.ard,
it reaches a lesser height; each time it swings downward, its velocity at the
bottom is less. Unless we pull or push it again, the swing eventually stops.

We can describe the sWing's motion in terms of the forces acting on it:
the parent's push, the force due to gravity, and so on. But we often reach for
other words to describe what we see. When we pull the swing back, we give it
something that enables it to move. This something seems to be transformed­
from position to motion to position-as the swing moves back and forth. Finally,
this something is gradually lost as the sWing slows down and stops. Whatever
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it is, seems irretrievably lost, for the swing never spontaneously starts to move
again. The name we give to this something is energy.

Like momentum, energy is a commodity transferred during an interac­
tion. In this chapter, we will look in detail at two forms of energy: grauitational
potential energy and kinetic energy. We will see that when no friction exists,
the sum of the gravitational potential energy and kinetic energy of a system
remains constant. As we identify other forms of energy, we will generalize this
constancy as the law of conservation of energy. When all parts of a system are
identified and all forms of energy taken into account, the energy of a system
is conserved.

INTERACTION, WORK, AND ENERGY

Change accompanies interaction. Whenever we observe a change, we know
that an interaction has occurred. In Chapter 5 we introduced the concept of
momentum to describe interactions in which objects change their velocities.
Now we introduce energy, a concept that describes a much broader range
of changes. Unlike momentum, there are many forms of energy.

The Energy Model

Intuitively, we define energy as the ability to make a change during an in­
teraction. All objects possess energy-all are able to initiate change. We are
not aware of this ability, however, until a change occurs. Consequently, we
measure energy as it is transferred from one object to another. The giver is
called the energy source, and the recipient is called the energy receiver.
Energy transferred from a battery to a light bulb causes the bulb to emit light.
Energy transferred from gasoline to an automobile engine causes the car to
move. Energy transferred from you to the swing causes the swing to move.
Energy transferred from the sun to a plant causes the plant to grow. In each
case energy has been transferred from a source to a receiver, causing one of
many possible kinds of change-production of light, motion, and growth, to
name only a few.

In order to trace the transfer of energy from source to receiver, we need
to be able to measure it. Because scY many kinds of change can result from
its transfer, measuring energy is not a simple matter. We begin by measuring
energy in terms of work. Later, as we examine the many forms that energy
can have, we will develop more direct ways of measuring it.

Energy and Work

Since real situations are often quite complex, let's begin with an idealized ex­
ample. Imagine a box lying on a very well-waxed floor-so well waxed that
we can ignore friction. Suppose you push the box with a force of 10 newtons
(N) to the right while the box moves 2 meters (m) to the right (Figure 9-2).
When you release the box, it will continue moving with the velocity it had the
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Figure 9-2

A force of 10 N to the
right moves the box 2
meters to the right.
The work done is
10 N X 2 m or
20 joules.
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moment you stopped pushing. There is no friction to slow it down. In this situ­
ation, you have acted as an energy source and the box as an energy receiver.
The evidence that energy has been transferred is the change in the box's mo­
tion . Initially the box was stationary; now it is moving at a constant velocity.

We can measure the amount of energy that was transferred in terms of
the work you did in pushing the box. Work is defined as the product of the
magnitude of the force exerted on the object and the distance the object
moves in the same direction as the force. This definition is summarized by the
equation

Work = force X distance

Work is a scalar quantity. It depends only on the components of the force and
distance that are in the same direction. The units in which work is measured
are the units of force times the units of distance, newton-meters (N . m). This
unit could be called a newton-meter, but it is given the name joule (J).

In moving the box, you exerted a force of ION to the right. The box
moved a distance of 2 m to the right. Since the box moves in the same direc­
tion as you push, the work you do is equal to ION times 2 m, or 20 J. This
work is a measure of the energy transferred from the energy source-you­
to the energy receiver-the box. The box now has 20 J of energy that it did
not have before, because you did 20 J worth of work on it. We are aware of
this energy because the box is now moving.

To give you some feeling for the size of the joule, Figure 9-3 includes the
energy content measured in joules for some common energy sources. You are
probably used to measuring the energy content of some of these sources in
other units, called calories. Various units are used for different kinds of en­
ergy, but all of them can be converted into joules. Today we use the joule as
the standard unit with which to measure energy and work.

We commonly use the term work to describe any situation in which we
exert forces, regardless of the result of our exertions. Most of us, for example,
would claim that a weight lifter is doing work as she struggles but fails to lift
a barbell (Figure 9-4). But physicists restrict their use of work to situations
in which energy has actually been transferred. Until the barbell moves, the
weight lifter has not transferred any energy to it. Consequently, she has done
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The weight lifter has not
done any work on the
barbell until she actually
lifts it, causing it to
change position.
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Figure 9-5

no work on it. This restriction is consistent with our definition of work. The
struggling weight lifter exerts a force but does not move the weight any dis­
tance in the direction of the force .
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ENERGY OF POSITION

A house painter, startled by a wasp, jumps off a ladder. As he strikes the
ground, energy is transferred from him (the energy source) to the ground (the
energy receiver). While the energy is not actually transferred to the ground
until he reaches it, the potential-or possibility-for this energy transfer ex­
isted as soon as he stepped on the ladder because of his height. Consider
another example. We drop the pile driver shown in Figure 9-6. As it strikes
the nail, energy is transferred from the hammerhead (source) to the nail (re­
ceiver). The energy is not transferred until the hammerhead hits the nail, but
the potential for energy transfer existed as soon as the hammerhead moved
upward. The painter and hammer both gain energy from their positions rela­
tive to the ground.
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Figure 9-6

The hammer acts as an
energy source and the
nail as an energy
receiver. The amount of
energy transferred can
be described in terms
of the distance the nail
is driven into the wood.
The greater the height
from which the hammer
is dropped, the more
energy it transfers to
the nail. The greater the
mass of the hammer­
head, the more energy
it transfers to the nail.

Gravitational Potential Energy

Gravitational potential energy is the energy stored in an object because of its
position relative to a massive object, such as the earth . As the hammerhead
is pulled upward, it gains gravitational potential energy because the earth is
pulling it back downward. We must do work to raise the hammerhead against
the force due to gravity. In the process of doing this work, we transfer energy
to the hammerhead. The evidence that energy has been transferred is the
new position of the hammerhead relative to the earth.

We can use the concept of work to develop a more complete definition
of gravitational potential energy. The work done in moving an object away
from the earth equals the gravitational potential energy gained by the object.
To lift the hammer, for example, we must exert a force vertically upward.
The magnitude of the force we exert is equal to the weight of the hammer­
the product of its mass and the acceleration due to gravity. This is the force
needed to keep the hammerhead moving at a constant velocity against the
pull of gravity. The distance the hammer moves is its final height above the
bottom of the pile driver. Since the force we exert is in the same direction as
the hammer moves, the work we do is:

Work = force X distance •
= (weight of hammer) X (height of hammer)

= (mass of ) X (acceler.ation due) X (height)
hammer to gravity

In lifting the hammerhead, we act as the energy source and the hammer
acts as the energy receiver. The work we do becomes the gravitational po­
tential energy stored in the hammerhead. Consequently, we define gravita­
tional potential energy as the product of an object's mass, the acceleration
due to gravity, and the object's height above some reference point:

Gravit~tional = (mass of ) X (acceler~tion due) X (height)
potentIal energy hammer to gravity

Gravitational

PTt::::ecgy

\ \Htt
GPE= mgh

(
Acc.eleration
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gravity
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When mass is given in kilograms (kg), acceleration due to gravity in (meters/
second)/second, and height in meters, gravitational potential energy is given
in joules.

This definition allows us to calculate the gravitational potential energy
stored in any object, regardless of how complex the energy-transfer process
is. The house painter, for example, supplies his own energy as he climbs the
ladder. Energy supplied by the food he eats is released in a series of complex
chemical reactions; this enables him to climb the ladder. Without knowing any
details of the process, we can calculate the increase in his gravitational po­
tential energy from his mass (70 kg) and the height he climbs (4 m). He gains
(70 kg){9.8 (m/s)/s){4 m) = 2744 J. As he stands at the top of the ladder, he
has 2744 J of gravitational potential energy. When you eat 2~ tablespoon of
yogurt, you gain about this much energy. It isn't much!

The Pile Driver

So far we have considered the hammerhead as an energy receiver. It is raised
from the bottom of the pile driver and, in the process, acquires gravitational
potential energy. Once raised, the hammerhead can act as an energy source.
Its gravitational potential energy is eventually used to drive a nail into a piece
of wood. The distance the nail is driven into the wood provides a rough esti­
mate of the amount of gravitational potential energy the hammerhead had be­
fore its descent. We can use this relationship to gain additional insight into our
definition of gravitational potential energy.

The definition of gravitational potential energy tells us that the ham­
mer's energy depends on its mass, its height above the nail, and the accelera­
tion due to gravity. Figure 9-6 describes the results of experiments in which
the hammerhead's height and mass were varied. Dropped from different
heights, the same hammer drives the nail different distances into the wood.
Roughly speaking, when we double the height from which the hammer is
dropped, we double the distance the nail is driven into the wood. Dropped
from the same height, different hammerheads also drive the nail different
distances into the wood. The larger the mass of the hammerhead, the greater
the distance the nail is driven. The hammer's energy depends on its mass and
on the height from which it is dropped.

A third variable is the effect of gravity. If our hammer were moved to
an orbiting space station, it would never fall. Both the hammerhead and the
space station fall toward the earth together; consequently, they do not move
relative to one another. A less extreme example would be to take the hammer
to the moon. There the gravitational attraction is about one-sixth that on
earth. In an experiment identical to one performed on earth, the nail would be
driven in only one-sixth as far on the moon. The hammer's energy depends on
the strength of the gravitational force at its location.

The experiments with the pile driver increase our confidence in the defi­
nition of gravitational potential energy. The distance the nail is driven into the
wood depends on the mass of the hammerhead, the height from which the
hammerhead was dropped, and the acceleration due to gravity at the location
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Figure 9-7

Relative to the table,
both hammers have the
same gravitational
potential energy.
Relative to the nail, the
hammer on the left has
more gravitational
potential energy than
the hammer on the
right.

at which the experiment is performed-the same variables that define the
gravitational potential energy of the hammerhead. The energy that the ham­
merhead transfers to the nail is equal to the energy the hammerhead gained
when it was raised.

Gravitational Potential Energy
is a Relative Concept

Gravitational potential energy is a relative, not absolute, concept. The ac­
celeration due to gravity and mass are defined by the location and object,
respectively; so these quantities are the same regardless of the energy re­
ceiver chosen. The height, however, depends on the position of the energy
receiver chosen.

We can demonstrate the importance of the location of the energy reo
ceiver chosen with the experiment shown in Figure 9-7. The hammerhead has
been lifted to a height of 1 m above the table. In (a) the nail is placed directly

•on the table. In (b) the nail is placed on a box halfway between the hammer·
head and the table. While the height of the hammer relative to the table is the
same in both cases, its height relative to the nail is not.

Once the hammer is dropped, the importance of the reference point .
chosen becomes apparent. Relative to the table, the hammer had the same
gravitational potential energy in both situations. Relative to the nail, the ham­
mer in (a) had the greater gravitational potential energy. The nail has been
driven in further in (a) than in (b). The amount of gravitational potential
energy possessed by the hammer is only of interest to us when it has been
transferred to an energy receiver. Consequently, the vertical distance from
the energy source to energy receiver (hammer to nail) is used to calculate the
gravitational potential energy of the source.
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Figure 9-8
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Cable Cars and Swings

Our civilization has many devices for changing the gravitational potential en­
ergy of people and objects. Ski lifts and elevators change the gravitational po­
tential energy of people . Cranes change the gravitational potential energy of
building materials as the cranes lift the materials high above the steel skele­
tons of giant skyscrapers. Usually other forms of energy-electricity, oil, or
diesel fuel-are used to accomplish these changes. The San Francisco cable
car system, however, uses the decrease in the gravitational potential energy
of one object to increase the gravitational potential energy of another.

San Francisco, with its steep hills, presents a challenge to nearly all modes
of transportation. In the 1870s its now-famous cable car system was designed
and constructed. A cable car, as its name implies, is connected to long cables
that move beneath the street. To move the car, the operator pulls a lever that
connects the car to the cable. To stop the car, he or she releases the car from
the cable and sets the brake. The cable for each car line forms a complete
loop; so cars going uphill and cars going downhill are attached to the same
cable (Figure 9-9).

The gravitational potential energy of the cars is constantly changing.
Cars going up increase their gravitational potential energy, while cars going
down decrease theirs. A car that is moving downhill does work on a car that
needs to go uphill-it pulls it up. In this way the gravitational potential energy
lost by a downhill car is gained by an uphill car-an extremely efficient
design!

The chapter opened with the photograph of a swing. We were looking
for concepts to describe its motion. Gravitational potential energy provides us
with one such concept. Pulled back from rest (Figure 9-10), the swing gains
gravitational potential energy. Though the swing is being pulled both outward
and upward, only the change in vertical height contributes to this gain. Sup­
pose an empty swing of mass 2 kg is pulled to a vertical height of 1.2 m above
its position at rest. It will have gained (2 kg)(9 .8 (m/s)/s)(1.2 m) = 23.5 J.
Once the swing is released, this gravitational potential energy decreases to
zero as the swing moves back to its original position.
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Figure 9-9

The cable forms a
complete loop so that
cars going downhill can
transfer energy to the
cars going uphill.

© Gene Ahrens, Freelance Photographer's Guild.
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ENERGY AND MOTION

The sWing's speed increases as its gravitational potential energy decreases.
The same is true about the house painter, the pile driver, and a San Francisco
cable car. The instant before he hits the ground, the house painter has no
gravitational potential energy, but he is moving. The instant before it transfers
its energy to the nail, the hammerhead has no gravitational potential energy,
but clearly it has energy to transfer. The motion of the cable cars traveling
downhill somehow supplies the gravitational potential energy needed to move
other cars uphill. Energy must be present in moving objects.

Variables that Affect Energy of Motion

A convenient example with which to investigate the energy associated with
motion is a car. A moving car has ener~. This energy changes when the fric­
tional force of the brakes does work to bring the car to a stop. When we apply
the brakes, the wheels lock; increased friction between the tires and the road
stops the car. The product of the constant force exerted by friction and the
distance the car travels in coming to a stop, called the stopping distance, is the
work done by friction. Like the energy gained by the box when we did work in
pushing it, the energy lost as the car comes to a stop should equal the work
done by friction . This relationship between work and energy enables us to
identify the variables that describe the car's energy while moving.

From experience we know that the faster we drive, the greater the stop­
ping distance we require. Figure 9-11 shows a diagram found in most driver­
training manuals. The average stopping distance is shown for cars moving
initially at different speeds. Since the frictional force applied by the surface is

9 = 9.e (m/ 5)/5

Figure 9-10

Pulled back from its
rest position, a swing
gains gravitational
potential energy equal
to its mass times the
acceleration due to
gravity times its vertical
height above the rest
position.
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Figure 9-11

The stopping distance
depends on speed. At
90 kilometers per hour,
the stopping distance
required is nine times
that at 30 kilometers
per hour.

Kinetic energy

r Mr
KE=otmv'

)
Speed

roughly the same in each situation, the stopping distance provides a direct
measure of the energy associated with the speed each car is moving. At
90 kilometers per hour (km/h), the stopping distance is four times that at
45 km/h and nine times that at 30 km/h. Doubling the speed quadruples the
stopping distance required; tripling the speed increases the stopping distance
by a factor of nine. Energy of motion is related to the square of the speed.

A second important variable is mass. Most owner's manuals include in­
formation about the stopping distance required when you apply the brakes to
a car moving initially at 60 miles per hour (mi/h). This distance is listed for
different loads-typically, light loads and maximum loads. If we were to ex­
amine the stopping distance for these different loads, we would find that
doubling the mass of the car doubles the stopping distance required (Figure
9-12). The car's energy while moving is directly related to its total mass.

Kinetic Energy

Kinetic energy is the name given to the energy an object possesses by virtue
of its motion. The swing, the house painter, the hammer, and the cable car all
have kinetic energy as they move downward. Our experience with stopping
distances for cars suggests that this energy is related to the mass of the object
and the square of its speed. By combining Newton's laws with our definitions
of work, velocity, and acceleration, we can develop a complete definition for
kinetic energy:

Kinetic energy = ~ X (mass) X (speed)2

The kinetic energy (KE) of an object is one-half the product of the object's
mass and the square of its speed. When mass is expressed in kilograms and
speed in meters/second (m/s), the kinetic energy is given in joules.

This definition allows us to calculate the kinetic energy of any moving
object, given its mass and speed. For example, we can compare the kinetic
energy of a car moving along an interstate highway with that of the same car
traveling in a school zone. Assume that the car has a mass of 1000 kg (sub­
compact size). The speed limit on an interstate highway is about 25 m/s
(55 mi/h), while that in a school zone is about 9 m/s (20 mi/h).
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The stopping distance
depends on mass.
DOUbling the mass
doubles the stopping
distance required .

Interstate Highway

KE = ~mu2

= ~(l000 kg}(25 m/sf

= 312,500 J

Schoo/Zone

KE = ~mu2

= ~(l000 kg}(9 m/sf

= 40,500 J

Because kinetic energy depends on the square of the speed, the increase in
kinetic energy is substantial. It is not hard to see why accidents are so much
more devastating on the highway than in city traffic.

Kinetic energy is very similar to the concept of momentum introduced
in Chapter 5 . Both depend on the object's mass and motion. Momentum de­
pends on the object's mass and its velocity. Kinetic energy depends on the
object's mass and the square of its speed. When an object's velocity doubles,
its momentum doubles, while its kinetic energy increases by a factor of four.
Another important difference between the two concepts is that momentum is
a vector quantity, while kinetic energy is a scalar. In a system consisting of
two objects, the total momentum of the system can be zero even though both
objects are moving. The total kinetic energy of this same system can never be
zero. Kinetic energies always add.
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ENERGY IS CONSERVED

Let's return once more to the motion of the sWing. In pulling the swing back
from rest, we do work on it-giving it the energy that enables it to move.
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Figure 9-13

The motion of the
pendulum bob captured
in a strobe-like drawing
shows the change in
height and velocity of
the pendulum ball.

Armed with the concepts of gravitational potential energy and kinetic energy,
we can now describe this motion in more detail. To do so, we first examine the
motion of a simplified version of the swing, the pendulum.

Potential Becomes Kinetic Becomes Potential

The strobe-like drawing in Figure 9-13 captures the motion of a pendulum bob
through one complete swing. Successive images are closely spaced at A, be­
come more widely spaced at C and then once again become more closely
spaced at E. Using the methods developed in Chapter 2, we would describe
the speed of the pendulum bob as being at a minimum at A and E and a
maximum at C. By contrast, the height of the pendulum bob above its rest
point is at a maximum at A and E and a minimum at C. Height seems to be
exchanged for motion and then motion for height.

We can use the concepts of gravitational potential energy and kinetic
energy to describe this interchange of height and motion. Figure 9-14 shows
the motion of an idealized pendulum, one in which no friction acts to slow its
motion. In order to calculate the gravitational potential energy of the pendu­
lum bob at any point in its swing, we need to know the bob's mass, its height
above the rest position, and the acceleration due to gravity. The kinetic en­
ergy of the pendulum bob depends on its mass and its speed at each specific
location. Table 9-1 includes the height and speed of a 1 kg pendulum bob at
several points along its path. The gravitational potential energy and kinetic
energy have been calculated for each location.

As shown in Table 9-1, the pendulum bob has maximum gravitational
potential energy at A. As it moves downward, its gravitational potential en­
ergy decreases steadily, while its kinetic energy increases. At the bottom of
the swing, the bob has no gravitational potential energy but a maximum
kinetic energy. As the pendulum moves upward, the process reverses itself:
Kinetic energy decreases while gravitational potential energy increases. At E
the gravitational potential energy is again at a maximum and the kinetic

, ". / " . ~: "..,~.-. :.. . , , . . .
Table 9-1 Gravitational ·Potential Energy and Kinetic Energy

- - of Pendulum . .,
. ". . , . ~

."
Kinetic TotJ 'J,.;Ene . ','. "",,~ ,.~ 1~9V
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A 2.04 20 0 0 20

B 1.02 10 4.47 10 20

C 0 0 6.32 20 20

D 1.02 10 4.47 10 20

E 2.04 20 0 0 20
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The arteries and veins in our bodies form a
network that is about 96,000 km long, through
which about 5 liters of blood circulate. The rate
at which this blood circulates depends on the
energy supplied by the pumping action of the
heart. We can use the concept of kinetic energy
to compare this energy at both low and high levels
of activity.

The heart rate increases as we increase our level
of activity. This increased heart rate accomplishes
two things: (1) it increases the mass of blood
ejected with each contraction, and (2) it increases
the speed with which the ejected blood moves.
At a low level of activity, a single contraction of
the heart ejects .06 kg of blood at an average
speed of 0 .3 m/s. At a higher rate of activity,
each contraction ejects .12 kg of blood at an
average speed of 0 .6 m/s. The kinetic energy of

A E.

the ejected blood associated with each level of
activity is:

Low Level

= t (.06 kg)(0 .3 m/s)2

= 0.0027 J

High Level

KE = tmv2

= t U2 kg)(0.6 m/s)2

= 0 .0216 J

Because both mass and speed are increased, the
heart must supply considerably more energy at
higher levels of actiVity.

Figure 9-14

The gravitational
potential energy is a
maximum at each end
and zero in the middle.
The kinetic energy is a
maximum in the middle
and zero at each end.

energy is zero. Gravitational potential energy has been transformed into ki­
netic energy and back into graVitational potential energy.

Conservation of Energy

The transformation of graVitational potential energy into kinetic energy and
back again can be understood in terms of a much broader concept-the law
of conservation of energy. Notice that the graVitational potential energy of the
pendulum bob at A is equal to the kinetic energy at C. In fact , if you add
the gravitational potential energy and kinetic energy for each position of
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the swing, you'll see that it always totals 20 J. The sum of these two quanti­
ties is conserved.

r-- REMINOER-----------,

In everyday use, to conserve means to save. In physics,
to conserve means to keep constant. Confusing the ev­
eryday use with the physics definition may be hazardous
to your understanding.

The law of conservation of energy states that the total energy of a
closed system remains constant. In the case of our idealized pendulum, which
does not interact with air or with any supporting mechanism, the closed sys­
tem consists of the pendulum and the earth. In pulling the pendulum back
from its rest position, we give the closed system 20 J of energy. Once we re­
lease the pendulum, the energy of that system remains constant. The interac­
tion between the pendulum and the earth causes the energy to change
form-from gravitational potential energy to kinetic energy and back again.
As the gravitational potential energy decreases, the kinetic energy increases,
keeping the total energy of the system constant at 20 J. We can summarize
this with a single equation:

Total energy at one time = total energy at later time

(GPE + KE)time 1 = (GPE + KE)lime 2

Because the energy of the system is conserved, our ideal pendulum keeps
swinging forever! Of course, you have never seen a pendulum do this because
you have never seen a closed system consisting of just the earth and the
pendulum. Energy exchanges on earth, as you will see, involve other energy
receivers and other forms of energy.
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r Q1
~~EASIER THAN WALKING? .-~- -. Why waste the en- :

ergy provided by
fossil fuels when we
have all that gravita­
tional potential en­
ergy around? That
question was consid­
ered by Isaac Smyth
in 1911 when he in­
vented the gravity­
powered automobile.
Inside the walls of the
car are weights (31),
which can be raised
to the roof level (30)
by means of a crank chains (9 and 20). driven car had a raise the weights had
(26). When released, Thus, the gravita- couple of disadvan- to come from some-
the weights drop and tional potential en- tages. First, the back where. The driver
transmit their gravita- ergy of the weights is wheels had to be needed to supply a
tional potential en- converted into kinetic lifted off the ground lot of energy in order
ergy through pulleys energy of the auto- while raising the to get to the grocery
and cables (27 and mobile. Unfortu- weights. More impor- store!

~ 29) to the drive nately, the gravlty- tantly, the energy to i
r~D""'" 'O~~

ENERGY TAKES MANY FORMS

like conservation of momentum, conservation of energy demonstrates our
search for quantities that remain corfstant throughout interactions. Unlike mo­
mentum, energy can assume more than one form . Conservation logic has en­
abled us to identify these other forms of energy.

Energy Does Not Always
Seem To Be Conserved

You do work-giving a child a push on a swing. The child seems to be enjoy­
ing thoroughly the change from gravitational potential energy to kinetic en­
ergy and back again. The next thing you know, the swing stops and the child
is crying. The child has neither gravitational potential energy nor kinetic en­
ergy. Real swings and real pendulums eventually stop.
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The ski lift takes you to the top of the mountain. Using energy supplied
by the lift, you have increased your gravitational potential energy. As you ski
down the hill, your kinetic energy increases-but never as much as your grav­
itational potential energy decreases. When you reach the bottom of the moun­
tain, you gradually come to a stop. Both your gravitational potential energy
and your kinetic energy are gone.

In real interactions, the sum of the gravitational potential energy and
kinetic energy does not remain constant. If we watch the skier or the swing
long enough, we see the sum of these two forms of energy gradually decrease.
If energy is really conserved, this lost energy must be transferred to other
receivers within our closed system. Let's look for these receivers and methods
by which the "lost" energy could have been transferred to them.

Energy transferred
to snow

)
Distance
traveled

Es =FfR~

(Frictional
force

Thermal Energy

The skier-earth and swing-earth systems are not closed. In both situations, in­
teractions occur with other objects through frictional forces. The skier slides
along the snow. The swing rubs against its point of suspension. Both the swing
and the skier experience air resistance. These interactions identify the other
energy receivers.

We can measure the amount of energy transferred to these objects in
terms of the work done by frictional forces. The energy transferred from the
skier to the snow, for example, is equal to the product of the frictional force
exerted by the snow and the distance the skier travels.

Energy transferred to snow = work done by friction

= (force of friction ) X (distance)
exerted by snow traveled

A frictional force of 0.1 N applied along a ski slope 100 m long results in 10 J
of energy being transferred to the snow. This energy usually appears in the
form of heat, or thermal energy. Careful measurements of the snow would
show a slight increase in its temperature. We could repeat the analysis for the
frictional force offered by air resistance. We expect to find that the surround­
ing air would be warmed slightly as energy is transferred from the skier to
the air.

Energy is still conserved. Our law of conservation of energy is simply
modified to take into account this new form of energy.

Total energy at one time = total energy at later time

(GPE + KE + therma1)time 1 = (GPE + KE + thermal)time 2

The addition of a new form of energy means that we need to look for changes
other than changes in position or motion. Chapter 10 deals with the changes
that result from a transfer of thermal energy.
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r---------- SELF-CHECK 9E--- .....,

"

A skier whose total mass Is, 80 kg stood at thetol> of a ,ski stope
whose vertical height was 100 m. At the botl0J:Il of the slope, ,the

-skids kinetic energy was 50,000 J. .

a~What wasthe skier's gravitational potential energy at the top of
the sloper ' .'

b: Was aU :offhis energy coiw'ertedinto ki~eticeri~igy?If not, where
, • did it So? ' ' ,

Other Forms of Energy

The analysis we have just completed illustrates the process by which physi­
cists identify other forms of energy. Conservation logic is such a compelling
part of our experience that whenever conservation of energy seems to fail, we
begin looking for a previously unknown form of energy. So far this procedure
has always worked, and many forms of energy have been identified. All forms
of energy can be categorized as potential or kinetic.

Potential energy describes the energy an object has by virtue of its posi­
tion. It can be thought of as energy stored with the object. In the case of gravi­
tational potential energy, the object's position is measured relative to the
earth. The work done in opposing the graVitational force leads to an increase
in an object's gravitational potential energy. Each of the other fundamental
interactions-electrical, strong nuclear, and weak nuclear-also have forms
of potential energy associated with them. Electrical interactions are the glue
that holds matter together. Electrical forces bind electrons to atomic nuclei;
they bind atoms to one another to form molecules; they bind molecules to­
gether to form cohesive materials. Because electrical interactions are such a
fundamental part of matter, electrical potential energy can take many
forms. A coiled spring, for example, has elastic potential energy that
results from electrical interactions between molecules in the spring. Another•example is the chemical potential energy in molecules of chemical com-
pounds. This stored energy is due to the electrical interactions that hold atoms
in specific positions within molecules of the compounds. Both elastic and
chemical potential energy are the result of work-forces acting over distances
to compress the spring or to arrange the atoms into molecules. Nuclear
potential energy exists for both strong and weak nuclear interactions. The
most awesome demonstration of this form of energy occurred when the nu­
clear bombs were dropped at Hiroshima and Nagasaki.

Kinetic energy is the energy of motion. While we have used it only to
describe the energy of motion associated with large objects, we can use it to
describe other forms of energy associated with the motion of atoms or mole­
cules. For large objects we measure kinetic energy in terms of the mass and
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speed of each object. At the microscopic level, we measure energy of motion
in terms of the temperature of the object. Atoms and molecules move con­
stantly, transferring their energy to one another through collisions. We per­
ceive this transfer as temperature change. This kind of energy of motion is
called thermal energy, or heat. A third form of energy that involves motion
is wave energy. Common examples include sound and light.

Toto I energy

O;fObrjeC:e,at;V;5t;c
mass

£::: me'

l.speed of
light

Mass is a Form of Energy Too

One of the more surprising forms energy takes is mass. Suppose we are
exerting a net force on an object, causing it to accelerate. We act as the en­
ergy source and the object acts as the energy receiver. The work we do as we
apply this net force appears as an increase in the object's kinetic energy. At
usual speeds the object's kinetic energy quadruples each time its speed dou­
bles. As discussed in Chapter 6, however, we cannot keep accelerating the
object forever. As the object's speed approaches that of light, its mass in­
creases. From our point of View, we have to exert even more force to acceler­
ate it further. We are still delivering energy to the object, but the energy no
longer produces the same change in speed as it did at lower speeds. At
speeds near that of light, our energy appears in the increased mass of the
object. Energy is being converted into mass.

Einstein described this mass-energy equivalence in what is probably
the most famous equation of twentieth-century physics:

Energy = mass X (speed of lightf

It states that the total energy of an object equals its relativistic mass times the
speed of light squared. When mass is expressed in kilograms and the speed of
light in meters per second, the energy is given in joules. As we saw in Chap­
ter 6, the relativistic mass of an object varies with its speed. Now we see that
this increase in mass reflects an increase in the amount of energy stored with
that object.

The most surprising conclusion of mass-energy equivalence comes when
an object is not moving. At zero speed, an object still has mass, its rest mass.
Einstein's equation tells us that we can associate this mass with a certain
amount of energy-the object's rest mass times the speed of light squared. If
we could convert all the rest mass found in 2 kg of potatoes into energy, we
would have (2 kg) X (3 X 108 m/s)2 = 18 X 1016 J of energy. Because the
speed of light is such a large number, the energy equivalent of an object's rest
mass is enormous!

Mass-energy equivalence requires that we modify our conservation prin­
ciples. The total energy of a system must now include the energy equivalent
of the rest masses of the objects found in the system. In everyday interactions,
the rest masses of objects remain constant, so we can effectively ignore them.
At high speeds or in interactions in which the total mass of the system
changes, the energy associated with mass becomes important. Mass-energy
eqUivalence has been dramatically demonstrated in nuclear interactions. Both
nuclear reactors and nuclear weapons derive their energy from decreases in
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Modern vehicles use
the chemical poten­
tial energy stored in
gasoline to create the
kinetic energy of the
car. Just about the
same time as the
automobile was being
invented, F. H. C.
Mey came up with
the idea of using the
chemical potential
energy stored in a
different source-a
source (B) available
in many homes. The
users feed their dogs
lots of energy in the cially designed vehi- turn the wheel that food is converted into
form of food. Then, cleo With a little urg- pulls the vehicle and kinetic energy of the
the dogs are placed ing from the whip its passenger. The person and vehicle.

6) in the hollow wheel (unlabeled), the dogs chemical potential (V

~ (C) of Mr. Mey's spe- start running and energy of the dog ~

r~e o~

rD 01
~"CHANGING ENERGY FORMS, CANINE TO KINETIC iJ~

~

the mass of atomic nuclei. These interactions will be discussed in more detail
in Chapter 22. When the total mass of the system changes, mass-energy
equivalence must be included in order to conserve energy.

The process by which we developed definitions of gravitational potentiai
energy and kinetic energy can be used to develop definitions of these other
forms of energy. The remaining chapters in this book deal with many of these
forms of energy in turn. Chapters JO-13 consider the electrical potential
energy and thermal energy found in matter. Chapters 14-16 discuss wave
energy. Chapters 17 and 18 look at the electrical energy involved in the atom.
Chapters 19 and 20 discuss electrical energy, and Chapters 21 and 22 dis­
cuss nuclear energy. The breadth of phenomena encompassed by the various·
forms of energy make energy a powerful concept-one that unites the var·
ious fields of physics.

CHAPTER SUMMARY

Energy is the ability to make a change during an interaction. Like momentum
and unlike force, it is a commodity that is transferred from one object to an­
other during an interaction. Energy that is transferred from an energy source
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to an energy receiver results in an observed change in the energy receiver.
Energy can be measured in terms of the work done on the receiver. Work is
defined as the product of the force exerted on an object and the distance the
object moves in the same direction as the force. Work and energy are mea­
sured in units called joules.

This chapter formally defines two of the many forms of energy. Gravita­
tional potential energy is the energy due to the position of an object relative to
a massive object such as the earth. It is formally defined as the product of the
object's mass, its height relative to a selected reference point, and the acceler­
ation due to gravity. Kinetic energy is energy associated with the motion of an
object. It is defined as one-half the mass of the object times the square of its
velocity. In a closed system in which no friction exists, the sum of the gravita­
tional potential energy and kinetic energy remains constant. The total energy
of the system is conserved.

As we apply the principle of energy conservation to more complex sys­
tems, new forms of energy are discovered. These forms of energy can be cate­
gorized as being energy due to position (potential energy) or energy due to
motion (kinetic energy). Each of the four fundamental interactions has a form
of potential energy associated with it: gravitational potential, electrical poten­
tial, strong nuclear potential, and weak nuclear potential energies. Energy of
motion includes the kinetic energy we defined for large objects, thermal en­
ergy associated with the motion of atoms and molecules in matter, and wave
energy associated with sound and light. At speeds near that of light, energy is
stored in the increased mass of the object. Einstein demonstrated a mass­
energy equivalence, in which the total energy of an object is the product of its
relativistic mass and the speed of light squared. The energy of a closed sys­
tem remains constant at all times in systems in which all forms of energy have
been identified. This principle is called the law of conservation of energy. The
concept of energy unites the various fields of physics.

ANSWERS TO SELF-CHECKS

9A. a . Worker A:

Work = force X distance

= (20 N) X (2 m)

= 40 J

Worker B does no work on the crate. The force B exerts does not re­
sult in any horizontal motion of the crate . Consequently, the distance
the box moves in the direction of B's force is zero.

b. 40 J of energy have been transferred to the crate.

98. a. The bale is 6 m above the farmer.

GPE = mgh = (10 kg)[9.8 (m/s)/s](6 m)

= 588 J
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Problems and Questions

b. The bale is 0 m above his son.

GPE = mgh = (10 kg)[9.8 (m/s)/s](O m)

= 0 J

c. The farmer would receive more energy.

KE = ~mv2 = ~(2 kg)(4.86 m/s)2

= 23.6 J
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Work done to stop the swing is equal to the kinetic energy lost by the
swing: work = 23.6 J.

9D. a. Initially, the total energy of the system is the gravitational potential
energy of the hammer.

Total energy = GPE = mgh

= (5 kg)[9.8 (m/s)/s] (1 m)

= 49 J

b. The total energy of the system is conserved.

Total energy at one time = total energy at later time

The total energy is 49 J.

c. The moment before the hammer strikes the nail, the gravitational
potential energy is zero. The total energy of the system is now the
kinetic energy of the hammer head .

Total energy = KE = 49 J

! I
I

9E. a. GPE = mgh = (80 kg)[9.8 (m/s)/s](100 m)

= 78,400 J •

b. The kinetic energy at the bottom was 50,000 J . Not all the gravi­
tational potential energy has been converted into kinetic energy.
(78,400 J - 50,000 J), or 28,400 J, went into thermal energy.

PROBLEMS AND QUESTIONS

A. Review of Chapter Material

AI. Define the terms listed below:
Energy Gravitational potential energy
Energy source Kinetic energy
Energy receiver Mass-energy equivalence

Thermal energy
Energy of position
Energy of motion

Work
Energy conservation



202 Chapter 9. Energy

A2. In what units are work and energy mea­
sured?

A3 . Why does the object have to move in the
direction of the force in order for work to
have been done?

A4. What variables affect the gravitational po­
tential energy of an object?

AS . Why is gravitational potential energy a rel­
ative concept?

A6. What two variables affect the kinetic en­
ergy of an object?

A7. Which will cause the greater increase in an
object's kinetic energy-doubling its mass
or doubling its speed?

A8 . How does common use of the term to con­
serve differ from the way it is used in
physics?

A9. Describe the process by which new forms
of energy are often discovered.

AlO. What two categories describe the various
forms of energy?

A11 . How would you determine the energy
equivalent when you know the mass of an
object? How does this equivalence modify
the law of conservation of energy?

B. Using the Chapter Material

B1. A crane exerts a constant force of 9800 N
and lifts a slab of concrete onto a section of
scaffolding 100 m above the ground. What
is the work done by the crane? What form
of energy is transferred to the concrete?

B2. If the slab of concrete (mass = 100 kg) in
Problem Bl falls, what is its kinetic energy
just before it strikes the ground? (Neglect
friction .)

B3. Include friction and explain why the actual
kinetic energy of the concrete slab will
be less than the value calculated in Prob­
lem B2.

B4. In which of the following situations is no
work done?
a. A spaceship moves at constant velocity.
b. A child slides down a playground slide.
c. You push on a heavy box but cannot

move it.
d. You slam on the brakes and your car

stops qUickly.
B5. The acceleration due to gravity on Mars is

3.7 {m/s}/s. What is the gravitational po­
tential energy of a 70 kg Martian who is
3 m above the surface of the planet?

B6. A 500 kg elevator is stopped on the sec­
ond floor of a bUilding. What is the gravita­
tional potential energy relative to the first
floor, 10 m below the second? Relative to
the basement, 10 m below the first floor?

B7. What is the kinetic energy of a 50 kg skate­
boarder who is traveling at each of these
speeds: 1 mis, 2 mis, 3 mis, 4 mis,
6 m/s? How does kinetic energy vary with
speed?

B8. What is the kinetic energy of bicyclists who
are traveling at 5 mls and have the follow­
ing masses: 40 kg, 50 kg, 80 kg, 100 kg?
How does kinetic energy vary with mass?

B9. If you watch a gymnast revolving around a
crossbar, you will notice that her speed is
lowest when she is directly above the bar
and greatest when she is directly below it.
Explain this observation in terms of conser­
vation of energy.

BIO. Juliet is locked in a tower by her father.
Romeo, standing directly below her open
window, wishes to throw her a rock with
a message attached. The window is 10 m
straight up and the rock and message have
a mass of 0 .3 kg. How much kinetic energy
must Romeo give the rock in order for it to
reach Juliet?

B11 . If you were converted entirely to energy,
how much energy would you be?

C. Extensions to New Situations

Cl. A child slides down a hill on a sled. At the
top of the hill he has 800 J of gravitational
potential energy. At the bottom he has
200 J of kinetic energy. How much energy
was transformed into thermal energy due
to the frictional interaction between the
sled and the snow?

C2. Most roller coasters are pulled by a chain
to the top of the first hill on the ride. At
that point the speed of the roller coaster is
approximately zero. After that no more en­
ergy is put into the roller coaster through­
out the ride.
a . What types of energy must designers of

roller coasters consider as they plan a
new roller coaster?

b. Is it possible for any other hill to be
higher than the first one?

c. For most roller coasters, each hill is
shorter than the previous one. Is this de­
sign necessary?



C3. When we first studied collisions, we saw
that momentum was conserved for colli­
sions in a closed system. Consider energy
conservation for these same collisions. The
collision involved is one in which a 5 kg ball
moving at 2 mjs strikes a stationary 5 kg
ball head on . For parts (a)-(c) we assume
that the balls do not stick together.
a. Use momentum conservation to deter­

mine the speed of each ball after the
collision .

b. What is the kinetic energy of each ball
before the collision? After the collision?

c. Is kinetic energy conserved in this
collision?

d. Now assume that the two balls stick to­
gether after the collision. Use momen­
tum conservation to determine their
speed after the collision.

e . What is the total kinetic energy before
the collision? After the collision?

f. Is kinetic energy conserved in the sticky
collision?

g. Use the results of (a)-(f) to make a gen­
eral statement about conservation of ki­
netic energy in collisions.

C4. A ball that strikes the floor changes its
shape slightly as it interacts with the floor
(Figure 9-C4). Usually some energy is
changed from kinetic to other forms during
this process.
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a. In this situation the maximum height
reached after the first bounce will be
less than the height from which the ball
was dropped. Explain why.

b. How would the maximum height after
each successive bounce compare to the
one before it?

C5. A specific example of Problem C4 is a
0 .5 kg ball that is dropped from a height
of 4 m.
a. What is its gravitational potential en­

ergy at the start of the fall?
b. What is its kinetic energy just before it

strikes the ground?
c. On the first bounce the ball returns to a

maximum height of 3 .5 m. What is its
gravitational potential energy when it
reaches that height?

d. What is its kinetic energy just as it
leaves the ground after the first
bounce?

e . How much energy was transformed
into other forms of energy during the
bounce?

f. What reasoning would you use to pre­
dict the approximate maximum height
the ball would reach after the second,
third, and fourth bounce?

C6. An interesting toy consists of five pendu­
lums suspended as shown in Figure 9-C6
(a). The before-after pictures in Figure
9-C6(b) and (c) show what happens when
we pull back and release different num­
bers of balls . Using momentum conserva­
tion alone, we could explain the after mo­
tion knowing only the before situation. But,
momentum conservation allows events we
never see. For example, in the situation in
(c) we always see two balls go out after
the collision. Yet one ball going out at twice
the speed of the incoming balls would still
conserve momentum. To understand what
actually happens, consider an example in
which two balls are moving before the colli­
sion. Each ball has a mass of 1 kg and, just
before the collision, is moving at 1 mjs.
a. Is momentum conserved if, just after

the collision, each of two balls has a
speed of 1 mjs? If one ball has a speed
of 2 mjs? If each of four balls has a
speed of 0 .71 mjs?

b. Is kinetic energy conserved if just after
the collision each of two balls has a
speed of 1 mjs? One ball has a speed
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( a ) © 1972, Fundamental Photographers.

(b)

tional potential and kinetic energies when
answering these questions.
a. On many international flights each pas­

senger is limited to 20 kg of luggage.
For more mass, the passenger must pay
an extra charge. Does this regulation
make sense in terms of energy use?

b. In a lighthearted moment, an airline
executive suggested that overweight
people should pay a higher price for
airline tickets than people of average
weight; underweight people should get
a discount. In terms of energy, is this
sensible?

c. Suppose you were given the job of
establishing fares based on the ideas in
(b). How would you use energy con·
cepts to do so?

C9 . When energy costs increased rapidly, air·
lines began looking for ways to cut the use
of fuel. For example, TWA stripped the
paint off the exterior of some of its air·
planes, removed pillows, and swept the
planes more often. The paint removed
from the exterior had a mass of 100 kg
and each pillow had a mass of about
0 .5 kg.
a . How much work must be done to get

the paint moving at a speed of 245 mJs
(typical airline cruising speed)?

b. How much work is done to get a pillow
to that speed?

c. What is the gravitational potential en­
ergy of the paint and pillow at a cruis·
ing altitude of 10,000 m?

d. Why should the TWA management
think that these actions would decrease
fuel consumption?

C10. When kinetic or gravitational potential en·
ergy seems to appear or disappear, we
look for another form of energy. Use the
concept of conservation of energy to iden­
tify at least one new form of energy in each
example below. Explain how you arrived
at your answer.
a . In a pinball machine you pull back and

release a spring. Then the ball starts
moving.

b. An ancient way to start a fire is to rub
two sticks together.

c. A basketball player jumps up for a re­
bound.
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of 2 mJs? Each of four balls has a
speed of 0.71 mJs?

c. In which case are both momentum and
energy conserved?

d. Why are the results shown in the figure
the only ones that occur in nature?

C7 . You can get from the bottom to the top of
the Empire State Building (a distance of
approximately 400 m) in two ways, by
walking or by riding the elevator. For this
problem, assume that you have a mass of
75 kg.
a. Does the amount of work done depend

on the method you use to get to the top?
b. What (or who) does the work in each

case?
c. How much is the change in gravitational

potential energy?
C8 . Airlines must continually worry about the

fuel needed for their flights. Some regula·
tions or practices are related to the energy
they have to provide. Use both gravita·



d. A car moves by burning gasoline.
e . Elevators are lifted by electric motors.

Cll . Some interactions result in a decrease in
the total mass involved. The energy re­
leased in these interactions is the energy
equivalent to the difference in total mass
before and after the interaction. For each
interaction described below, use Einstein's
mass-energy equivalence relationship to
calculate the energy released.
a. Uranium (mass = 3.918 X 10- 25 kg)

splits into five particles with a total
mass of 3.915 X 10- 25 kg.

b. Four hydrogen nuclei (mass of each
nucleus is equal to 1.673 X 10- 27 kg)
combine to make one helium nucleus
(mass = 6.6443 X 10- 27 kg) and two
other particles with masses of
0.0091 X 10-27 kg each.

•
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c. An electron and a positron, each with a
mass of 0.0091 X 10- 27 kg, combine,
releasing energy only. No mass is left
over.

D. Activities

01. Keep a diary of the number of times you
increase your gravitational potential en­
ergy during one day. Estimate how much
your gravitational potential energy in·
creases during the day.

02. Look up the stopping distances, load, and
maximum load in the owner's manual for
your automobile . Are the stopping dis­
tances listed consistent with our definition
of kinetic energy?




