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What difference does it make anyway, whether we move faster or
whether the object becomes shorter? | have to go ten blocks to get
to the post office, and if I step harder on the pedals the blocks
become shorter and I get there quicker.

George Gamow, Mr. Tompkins in Paperback

Faster speeds? Shorter blocks? Logically it makes no difference. A greater
speed or a shorter distance will get you to the post office more quickly. How-
ever, never having seen a city block become shorter, we rely upon greater
speeds. The excerpt from Gamow’s book seems absurd—not because it vio-
lates our logic, but because it violates our common sense.

Our common sense includes an absolute concept of space and time.
While position and time clearly are relative concepts, other concepts that are
derived from measurements of position and time seem absolute. Take the
concept of duration, for example. If you leave New York at 8:00 A.M. EST
and arrive in Kansas City at 11:00 A.M. EST (Eastern Standard Time)}, the du-



Why a New Theory?

ration of your trip is 3 hours. Measured in a different reference frame, such as
Central Standard Time, you would leave New York City at 7:00 aA.M. CST
and arrive in Kansas City at 10:00 A.M. CST. The duration of your trip is still
3 hours. While the departure and arrival times will be different in different
reference frames, the duration of the event seems to be constant. The same
can be said about the length of an object. The position of each end of a city
block is described differently in coordinate systems that use different origins,
but the length of the city block—found by subtracting the coordinates of each
end—seems to be constant. In the last chapter we saw that measurements of
the velocity of the stagecoach or the velocity of the robbers would be different
in different reference frames. But the relative velocity between the stagecoach
and robbers—found by subtracting their velocities relative to the earth—
seems to be constant. This experience of constant length, constant duration,
and constant relative velocities allows us to imagine an absolute reference
frame against which we really can know the position or velocity of an object or
the time of an event.

At the turn of this century, many physicists imagined, either consciously
or unconsciously, an absolute reference frame for light. They expected the
speed of light measured here on earth to reflect the motion of the earth through
this absolute reference frame. An experiment performed by Albert Michelson
and Edward Morley in 1887, called the Michelson-Morley experiment, shat-
tered those beliefs when it showed that the speed of light is the same in all
reference frames. In 1905 Albert Einstein introduced the special theory of
relativity, which assumes that the speed of light is constant in all reference
frames. In so doing, Einstein did away with all notions of an absolute refer-
ence frame—forcing us to rethink our concepts of position, time, and motion.
Length, duration, and relative speeds vary with the motion of the reference
frame, though imperceptibly at ordinary speeds. At speeds near the speed of
light, city blocks do get shorter.

WHY A NEW THEORY?

Most people expect physical theories to develop in a stepwise fashion, almost
in the manner that a computer executes a program. In fact, such development
seldom occurs; the special theory of refativity is one such example.

Measurements by Michelson and Morley raised questions about the na-
ture of light. The speed of light seemed to be constant in all reference frames.
Apparently unaware of those measurements, Albert Einstein proposed a re-
markable theory based upon the assumption that the speed of light was con-
stant in all reference frames. In a sense, he had answered a question without
knowing that it had been asked. We begin with this question.

Speed of Light and Relative Speed

By 1887 the speed of light had been measured rather accurately. Light trav-
els at about 300,000,000 meters/second (3 X 10° m/s) in a vacuum. In ma-
terials like glass or water, light slows down a bit but always in predictable
ways. The surprise comes when we measure the speed of light emitted from
a source which is moving relative to us. ‘
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Figure 4-1

Albert Einstein.

Suppose you are driving past a sign advertising hamburgers. Light trav-
els from the sign to you as you move along in much the same way that the rob-
bers traveled toward the moving stagecoach (Chapter 3). Suppose your speed
relative to the earth is 20 m/s. The speed of light relative to the earth is about
300,000,000 m/s. Using the concept of relative speeds and velocities, we
would expect the speed of light relative to you to be 300,000,000 m/s +
20 m/s, or 300,000,020 m/s, as you approach the sign. If you pass the sign
and move away from it, then we would expect the speed of light relative to
you to be 300,000,000 m/s — 20 m/s, or 299,999,980 m/s. If you decrease
your speed to 10 m/s, the expected speed of light relative to you would be
300,000,010 m/s as you move toward the sign and 299,999,990 m/s as you
move away from it. We expect the speed of light relative to ourselves to
depend upon our motion. As we shall see, these expectations are contradicted
by experiments.

Michelson-Morley Experiment

When we talk about the speed of light relative to ourselves, we mean the
speed of light that we would measure as we move along. Admittedly, a speed
of 10 m/s or 20 m/s seems insignificant compared to the speed of light, but
experiments can be performed in which the observer is moving fast enough to
produce measurable differences. Albert Michelson and Edward Morley com-
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pleted such an experiment in 1887 using the earth’s motion as it revolves
about the sun (30,000 m/s) to provide the moving reference frame.

A sketch of the Michelson-Morley experiment is shown in Figure
4-2. An observer at B is watching two light beams that travel identical lengths.
The equipment is arranged so that the path ABD is in the direction of the
earth’s motion as it orbits the sun, while BC is perpendicular to the earth’s
motion. Since in one case the light is moving perpendicular to the motion of
the observer, the analysis of relative speeds is not as simple as in our earlier
examples. But we would still expect the speed of light to be different along
the two paths. When actually measured, however, the speed of light was
exactly the same along the two paths.

Because they contradicted our conventional view of relative speed,
these results were staggering. We expect speeds to vary according to the mo-
tion of the reference frame from which they are observed, but the Michelson-
Morley experiment tells us that the speed of light is always 300,000,000 m/s,
regardless of the observer’s motion. In terms of our example, light travels
toward us at the same speed whether We are standing still or moving toward
or away from the hamburger sign. The speed of light is independent of the
observer’s motion.

Special Theory of Relativity

By assuming that the speed of light is constant in all reference frames, the
special theory of relativity offers us a solution to the apparent contradictions
posed by the Michelson-Morley experiment. It begins with just two postulates:
1. The principles of physics are the same in all reference frames
moving at a constant velocity relative to one another.
2. The speed of light in a vacuum is the same value regardless of
the motion of the observer relative to the source of light.

Figure 4-2

Michelson and Morley
expected light to travel
at a different speed to D
and back than to C and
back. Instead they
found that light travels
at the same speed
along both paths.
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The special theory of relativity provides new meaning to the concepts of rel-
ative speed, time, and length. At low speeds these concepts are essentially
identical to the common-sense concepts developed in Chapters 1, 2, and 3. At
speeds near the speed of light, however, the special theory alters these con-
cepts radically. Since we have never traveled at such high speeds relative to
nearby objects, we have no everyday experience against which to check the
predictions. So don’t be dismayed if these concepts seem strange.

When Einstein proposed the special theory of relativity in 1905, the only
significant experience with high speeds had been the measurements of the
speed of light. Lacking direct experience, Einstein and others developed their
ideas using thought experiments. A thought experiment is an experiment
conducted in the mind, so to speak: We set forth postulates and then consider
what would happen under a variety of circumstances. In special relativity, a
thought experiment deals with a situation involving motion at speeds very
near the speed of light. While such an experiment is imaginary in the sense
that we cannot actually perform it, it does provide us with a logical conclusion
and suggests real experiments to verify its predictions. In the decades since
the special theory of relativity was proposed, observations of high-speed par-
ticles and distant galaxies have provided real experimental verification for
many of the thought experiments you will encounter throughout the remain-
der of the chapter.

RELATIVE VELOCITY AT
HIGH SPEEDS

Measurements of the speed of light in a variety of experiments confirmed
Einstein’s postulate that the speed of light is constant in all reference frames
moving at constant velocity relative to one another. Such measurements con-
tradicted the concept of relative speed and velocity we encountered in low
speed examples in Chapter 3. To explain these results, the special theory of
relativity replaces our low-speed definition of relative velocity with one that
can be applied to both low-speed and high-speed situations.

In Chapter 3 we developed a general rule for calculating the relative
velocity between two objects given their velocities relative to the earth. When
the robbers and stagecoach were moving toward one another, we added the
magnitudes of their velocities relative to the earth. Suppose we replace the
stagecoach and robbers with two spaceships, A and B, moving toward one
another at speeds near the speed of light. Our low-speed definition of rela-
tive velocity predicts that the velocity of A relative to B is simply the sum of
the magnitudes of their velocities relative to the earth. The special theory of
relativity modifies this definition by adding a term that limits this sum at
higher speeds. To get some feeling for how relative velocities change at high
speeds, let’s look at some specific examples.

Table 4-1 contrasts the low-speed and high-speed predictions of the rel-
ative velocity between our two spaceships, A and B. The low-speed column
lists a relative velocity that is the sum of the magnitudes of the velocities of
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the two spaceships. The high-speed column shows that these relative veloci-
ties have to be modified at higher speeds. At ordinary walking speeds, 1 m/s,
both the low-speed and high-speed definitions of relative velocity predict the
same result—the velocity of one spaceship relative to the other is 2 m/s. The
two definitions continue to predict roughly the same relative velocities up to
10,000 m/s (10* m/s). At higher speeds the relative velocity predicted by the
high-speed definition begins to be smaller than that predicted by the low-
speed definition. The difference between the relative velocities predicted by
the two definitions seems small up to about one-third the speed of light. At still
higher speeds, however, the difference becomes substantial. If both space-
ships move toward one another at two-thirds the speed of light (2 X 10® m/s),
their relative velocity is 2.77 X 10° m/s rather than 4 X 10® m/s.

If we replace spaceship B by a beam of light, then we see how the high-
speed definition of relative velocity correctly predicts Einstein’s second postu-
late. If observers in spaceship A could move at the speed of light, 3 X 10®m/s,
they would measure the speed of the light beam moving toward them to be
3 X 10® m/s—the same speed measured by a stationary observer. The speed
of light is 3 X 10® m/s regardless of the motion of the observers in spaceship
A. The high-speed definition of relative velocity is consistent with our low-
speed observations, consistent with the results of the Michelson-Morley experi-
ment and consistent with Einstein’s second postulate.

Table 4-1 Relative Velocity

1 1 2 2

10 10 20 20

100 100 200 200

1x10° 1 X 10° 210 2% 10°
1% 10* 1% 10* 2 X 10* 2 X 10

1 X 10° 1% 10° 2 X 10° 1.99999 X 10°
1% 10° 1 X 10° 2 X 10° 1.99998 X 10°
1 X 10 1x 10 2 X 107 1.99778 X 107
1 X 10° 1X 10° 2 X 10° , 18X 10° -
2 X 10® 2 X 10° 4 X 10° 277 X 10®

3 X 10° 3 x 10° 6 X 10° 3 X 10°
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SELF-CHECK 4A

An observer in spaceship A, moving at a speed of 1 X 10° m/s,
_measures the speed of a beam of light coming toward him. The speed

of light relative to the earth is 3 X 10® m/s. What do the low-speed ..
and high-speed definitions of relative velocity predict for the speed of . -
light the observer measures? Is the high- speed result consistent with
Einstein’s second postulate'? ~

SIMULTANEITY AT HIGH SPEEDS

Our concept of time (derived from experiences at low speeds) is absolute. We
imagine that time proceeds at the same rate for all observers. Two events that
occur simultaneously in one reference frame will be simultaneous in other ref-
erence frames as well. At speeds near the speed of light, however, this con-
cept of simultaneity changes. We examine the reason for these changes with
the help of a thought experiment involving two space travelers, Barbara
and Allen.

As shown in Figure 4-3(a), Allen stands on the surface of the earth, while
Barbara sits in a spaceship. A lamp has been mounted in the center of the
spaceship. Each time the lamp flashes, light moves toward both ends of the
spaceship. Since the distance to each end of the spaceship is equal, we expect
light to reach the ends simultaneously. While the spaceship is stationary,
Barbara and Allen will agree that light reaches the end of the spaceship
simultaneously. When the spaceship moves past Allen at speeds near the
speed of light, they no longer agree. Let us look at what each sees.

Figure 4-3(b) shows what Barbara sees in her reference frame. The lamp
is motionless relative to Barbara and the spaceship—they are all moving
together. Since the lamp always remains in the middle of the spaceship, light
travels the same distance in reaching the front and the back of the spaceship.
As stated in the second postulate, light travels at the same speed in all ref-
erence frames. Consequently, light reaches the front and back of the space-
ship simultaneously. Barbara’s report is the same as when the spaceship was
stationary.

As shown in Figure 4-3(c), the spaceship moves past Allen as light trav-
els from the lamp to each end of the spaceship. After the lamp flashes, the
back of the spaceship moves toward the light and the front moves away from
the light. The distance traveled by the light moving to the back is half the
length of the spaceship minus the distance traveled by the spaceship while the
light is in transit. Allen sees the light hit the back of the spaceship before he
sees it hit the front. Why? The light traveling toward the front must travel half
the length of the spaceship plus the extra distance traveled by the spaceship
while the light is in transit. Light traveling to the back of the spaceship travels
a shorter distance than light traveling toward the front. If the spaceship could



Simultaneity at High Speeds 65

travel at the speed of light (which it cannot, as we will see later), the light
would never catch up to the front of the spaceship. As it is, Allen no longer
reports that light strikes the front and back of the spaceship simultaneously.

Events that are simultaneous in Barbara’s reference frame are no longer
simultaneous in Allen’s reference frame. Their disagreement cannot be re-
solved —both could produce measurements to substantiate their statements.
They can, however, understand the reason for their disagreement. If the
speed of light is the same in both reference frames, events that are simulta-
neous in one reference frame cannot be simultaneous in a second reference

Figure 4-3

In Barbara’s reference
frame, light reaches the
front and back of the
spaceship simulta-
neously. In Allen’s refer-
ence frame, light
reaches the back before
it reaches the front.
Events that are simulta-
neous in one reference
frame will not be in
another that is moving
at a constant velocity
relative to the first.
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frame moving at a constant relative velocity. At low speeds, the difference is
so slight that observers in both reference frames continue to report that the
events are simultaneous. At speeds near the speed of light, however, the dif-
ferences are considerable. Observers in the two reference frames no longer
agree,

SELF-CHECK 4B

Barbara stands in the center of a supertrain. A lamp mounted.in the . .
- center sends light toward both ends."As the supertrain moves past.
- Allen at speeds near the speed of light, do Allen and Barbara agree
as to whether light reaches the ends of ‘the train sxmultaneously?
_Describe what each observes. and why. :

TIME INTERVALS AT HIGH SPEEDS

Most of our measurements of time involve duration rather than simultaneity.
We measure the time needed to travel to Kansas City, the time for the earth
to rotate on its axis and so forth. If our concept of simultaneous time depends
on the reference frame, we would expect the duration of an event to be differ-
ent in different reference frames as well.

An Experiment with Time

One measurement of duration, performed first in the 1940s and repeated in
the 1960s, involved small, fast-moving particles called muons, created in the
earth’s upper atmosphere by collisions between atoms and high-speed parti-
cles from outer space. Once created, the muons do not exist very long; they
spontaneously change into other particles, called electrons and neutrinos. The
time of a muon’s existence is measured by the half-life—the time it takes for
one-half the muons in a group to change into electrons and neutrinos. On
earth we measure the half-life of stationary muons to be about 1.53 micro-
seconds (us) (0.00000153 s, or 1.53 X 107% s). Thus, if we start with 1200
muons, 1.53 us later we will have only 600 left; another 1.53 us later we will
have only 300 left; and so forth. The muons’ behavior provides us with a
convenient clock. Knowing the initial number of muons, physicists can mea-
sure duration in terms of the number of muons left at some later time.

As muons are created in the upper atmosphere, they move toward the
surface of the earth at speeds of up to more than 99% the speed of light. By
measuring the number of muons at various heights as they move toward
earth, we can measure the half-life of the muons in this moving reference
frame and compare it to the half-life of 1.53 us measured in our stationary
reference frame on earth.

In an experiment performed in the 1960s, physicists measured the num-
ber of muons found at the top of Mount Washington, New Hampshire, (alti-
tude = 1907 m) and at sea level. The muons were traveling at 99.2% of the
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1200 muons here

Time = 4.26 half-lives

57 muons EXPECTED
70 muons SEEN !if

speed of light. Since we know the speed of the muons (0.992 X 3 X 10°
m/s = 2.976 X 10® m/s) and the distance traveled (1907 m), we can calcu-
late the time required for the muons to make the trip by dividing the distance
by the speed:

distance _ 1907 m

= =6.41 X 107°%s
speed 2.976 X 10°m/s

Time =

The time of travel, 6.41 us, is more than four times the half-life of the
muon particles, so we expect to see far fewer muons at sea level than at the
top of the mountain. As shown in Figure 4-4, if 1200 muons are detected at
the top of Mount Washington, only 57 should be detected at sea level if their
half-life is the same as in the laboratory. Actual measurements, however,
detected 870 muons at sea level. Clearly, the half-life of the muons in their
moving reference frame is longer than the Ralf-life measured in the laboratory.
We investigate the reasons for this with another thought experiment involving
Barbara and Allen.

Barbara proposes an experiment in which she and Allen measure the
duration of an event—the time it takes light to travel from a lamp to a mirror
and back to the lamp (Figure 4-5). Allen will measure the duration of this
event in two reference frames: one in which Barbara’s spaceship is stationary
relative to him and a second in which she is moving past him at 80% the
speed of light. This is analogous to measuring the muon’s half-life when the
muons are stationary and when they are moving toward the earth.

Figure 4-6 helps us compare what Allen will observe in the two refer-
ence frames. When the spaceship is stationary relative to Allen, the light
travels to the mirror, is reflected, and travels back to the lamp along the
vertical path shown in Figure 4-6(a). When the spaceship moves past Allen,

Figure 4-4

Muons traveled at over
90% the speed of light
as they fell toward the
earth’s surface. If time
is constant in the
muons’ and earth’s
reference frames, we
should see 57 muons at
the bottom of Mount
Washington. Instead we
see 870 muons. Time
moves more slowly in
the muons’ reference
frame.
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Figure 4-5

Allen will measure the
time it takes for light to
travel from the lamp to
the mirror and back in
two reference frames:
one in which the space-
ship is stationary
relative to him and

a second in which it
moves past him.

Figure 4-6

When the spaceship
moves past Allen, light
travels from the lamp to
the mirror and back
along the diagonal in (b)
rather than along the
vertical path in (a).
Since the distance is
greater, the time
interval will be greater.
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light travels along the diagonal path shown in Figure 4-6(b). We have to add
the horizontal motion of the spaceship to the vertical path of the light as it
moves to the mirror and back. The distance along the diagonal path is greater
than the distance along the vertical path. Since the speed of light is the same
in both reference frames, Allen will report that it took the light longer to travel
to the mirror and back in the moving reference frame than in the stationary
reference frame.

Time Dilation

The same event occurs in both reference frames. Light is emitted by a lamp,
reflected by a mirror, and returned to the lamp. However, the time between
the beginning of the event (emission of light) and the end of the event (return
of the light) is different. The duration of events is longer in the moving refer-
ence frame than in the stationary reference frame. This slowing of events is
called time dilation. When observers in one reference frame measure time
in another, they find that time varies with the relative speed of the two refer-
ence frames. Moving clocks run slower than stationary ones.

Table 4-2 allows you to compare the duration of events an observer
measured in the observer’s own stationary reference frame with the duration

Table 4-2 Time Dilation

0.0001 3x10° 100 - 1.000000005
0.001 - 3X 10° 100 1.0000005
0.01 3 X 10° 1.Q0 1.00005
0.1 13X 10 1.00 _ 1.005

02 6 X 107 1.00 102

0.4 12x10° 100 . 109

0.6 1.8 X 10° 100 1.25

0.8 24 X 10° 1.00 o167

0.9 2.7 X 10° 1.00 2.29

0.99 2,97 X 10° 1.00 . 7.09
0.999 2,997 X 10° 1.00 22.37

0.9999 29997 X 10° ~ 1.00 70.71
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Time in moving
reference frame

Time in stationary
reference frame

t

Speed of
light

Speed of
reference frame

observed in reference frames moving past at different speeds. The speed of
the moving reference frame has been described in two ways: as a fraction of
the speed of light and in meters per second. A reference frame that moves at
30,000 m/s is moving at 0.0001, or one ten-thousandth, the speed of light. At
relatively low speeds, like 30,000 m/s, the difference between the two mea-
surements of time is insignificant. We never notice time dilation in everyday
life—not even when traveling by jet at hundreds of kilometers per hour. As
objects begin to move at speeds near the speed of light, however, time dila-
tion becomes impossible to ignore. A lamp that flashes once per second when
motionless relative to you will flash once in 7.09 s when moving past you at
99% the speed of light. It is somewhat like watching a slow-motion movie.
Compared to events in our stationary reference frame, events in the moving
reference frame take longer. We conclude that time moves more slowly in the
moving reference frame.

We can use these results to understand the surprising results of the
muon experiment. When the muon is motionless relative to the experiment-

STEP FURTHER—MATH EE

TIME DRAGS ON

Using some geometry and algebra, we can derive an exact expression, called the
time-dilation equation, that relates the time intervals measured in different refer-
ence frames.

. time between events in
Time between two

. . stationary reference frame
events in moving =
reference frame \/ | _ (speed of frame)?

{speed of light)*

Applied to our thought experiment, this equation tells us that the time Allen
measures as Barbara moves past, called t, is equal to the time he would measure
if Barbara were stationary relative to him divided by v'1 — v?/c”.

We use this expression to compare the measurements Allen makes in the
two reference frames. Suppose it takes light 3 s to travel to the mirror and back
when the spaceship is stationary relative to Allen. When the spaceship moves past
at 80% the speed of light (v = 0.8¢), Allen measures a time of:

. t 3s

- = =5s
\[1 (v} \/1 _[0.8(3 x 10 m/s)
c (3 X 10®°m/s)
An event that takes 3 s in a stationary reference frame takes 5 s if you watch it in
a reference frame moving past you at 80% the speed of light. What if Barbara
goes even faster? At 90% the speed of light, the 3 s stretch into 7 s. At 99.9%

the speed of light, they become more than a minute. What about 99.99% the
speed of light? Try it and see!
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ers, its half-life is 1.53 us. As the muons travel at 99% the speed of light
relative to the observers, their half-life (as measured by the observers) is 7.09
times longer, 10.85 us. Since the trip from the top of Mount Washington to
sea level only lasted 6.41 us, the muons had not been through even a single
half-life. With the half-life of 10.85 us predicted by time dilation, 870 of the
1200 muons would be left after 6.41 us. This matched what had been mea-
sured at sea level!

SELF-CHECK 4C

‘An average cockroach has a hfetime of 3 months on' earth Suppose e
you observe the cockroach from the earth as it travels past youina
_spaceship, What lifetime would yon measure at ‘each of the followingf <

o relatwe speeds 0.1,04,0.8, 0 9 tunes the speed of llght'? :

Symmetry of Time Dilation

In thinking about time dilation, we must distinguish between what Barbara
measures and what Allen measures. Our thought experiment described what
Allen would see. If, for example, Allen sees an event take place in 3 s when
Barbara is stationary relative to him, he will see the same event take longer —
for instance, 5 s—when Barbara moves past him at 80% the speed of light.
Consider the measurements that Barbara might make. In her own reference
frame, the light will take 3 s to go down and back regardless of whether she
is stationary or moving relative to Allen. Her measurements will agree with
Allen’s when she is at rest relative to him, but they disagree when she is mov-
ing relative to him.

If we ask Barbara to measure an event on earth, she will notice the same
change in time duration as Allen. An event on earth that takes 3 s when she is
stationary will take 5 s as she moves past at 80% the speed of light. When
measuring events on earth, Barbara reports that earth time slows down as she
moves relative to the earth. When measuring events on Barbara’s spaceship,
Allen reports that time slows down as she moves relative to the earth. Each
views the other’s time to be proceeding more slowly.

SELF-CHECK 4D

" Allen sows a tormato seed. Three months tater he prcks the first npe“
~ tomato.. Barbara, traveling at 80%: the speed ‘of light relative to
" Allen, sows an identical tomato ‘seed..In Allen’s reference frame, how
much time elapses before Barbara picks: her first ripe. tomato? In-
Barbara’s refererice frame ‘how much time e!apses bef!)re Aﬂen
'prcks his first tamato’? , : ;

71
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Twin Paradox

While a bit bizarre, the fact that Allen sees the
light take longer to bounce off mirrors does not
seem impossible to believe. For most of us, the
next step—1from light clocks to biological clocks—
is a much more difficult one to accept. If Allen
sees time proceed more slowly in Barbara’s
reference frame as she speeds by, then he sees
all events proceed more slowly—including the
time between heartbeats. Allen sees Barbara age
more slowly.

One of the more startling outcomes of time
dilation is a thought experiment that came to be
called the twin paradox. Jackie takes off in a
rocket, travels to a nearby star at a speed near
the speed of light, turns around, and comes back
to earth. Her twin, Steve, stays home. During the
trip out, each views the other’s time to be
proceeding more slowly than their own. Steve
expects Jackie to be younger than he upon her
return. Jackie expects Steve to be younger.

When they meet again on earth, they cannot both
be younger!

The solution to the paradox lies in the fact that
the two reference frames did not move at a
constant velocity relative to one another. Seen
from Steve’s earthbound reference frame, Jackie’s
spaceship accelerated to its cruising speed,
continued at this speed until it reached the star,
accelerated as it turned around and headed back
to earth, cruised at a constant speed back to
earth, and finally accelerated {negatively) as it
landed. During the periods in which Jackie was
moving at a constant velocity relative to Steve,
each was seeing time proceed more slowly in the
other’s reference frame. During acceleration,
however, Jackie’s time was distorted, while
Steve’s was not. Jackie will return the younger
twin. The symmetry of time dilation is broken
once Jackie accelerates.

LENGTH CONTRACTION

Any measurement of length ultimately involves our concept of position. Typi-
cally, we place a meterstick along the side of the object and mark the position
of each corner of the object relative to the meterstick. The length is then the
difference between these two positions. While we think of position as a rela-
tive concept, most of us imagine length to be absolute. We expect the length
of the object to be the same, regardless of the motion of the reference frame.
But, as with our concept of time, the concept of length is altered in reference
frames moving at high speeds.

Length in the Muons’ Reference Frame

Consider a thought experiment with the muons that we introduced in the last
section. At the top of Mount Washington, we counted 1200 muons; at the bot-
tom, 870. Since the muons were moving at an enormous speed relative to us,
we explained this surprising result in terms of time dilation. Relative to us in a
stationary reference frame, time slows down in the moving reference frame.

Imagine that we can move into the muons’ reference frame and travel at
99.2% the speed of light. Now we are motionless relative to the muons. We
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describe the muons and ourselves as stationary and Mount Washington as
moving upward at 99.2% the speed of light. When we see the top of Mount
Washington pass us, we count 1200 muons, and when we see the bottom (sea
level) pass us, we count 870. A change in reference frame cannot cause
muons to appear or disappear; the number we count must be the same in all
reference frames. But here a contradiction arises. Since we are stationary
relative to the muons, we once again measure their half-life to be 1.53 us. To
determine the duration of the descent, we divide the height of Mount Wash-
ington by our speed. Thus, we expect the descent time to be (1907 m)/
(2.98 X 10% m/s), or 6.41 us—more than four muon half-lives. If this time
calculation is correct, only 57 muons should be left.

In both reference frames—the one in which the muons are stationary on
earth and the one in which we are moving with the muons at 99.2% the
speed of light—the half-life must be 1.53 us. The number of muons counted
at the top and at the bottom of Mount Washington must also be the same in all
reference frames. Consequently the only incorrect reasoning is the calculation
of the travel time. To arrive at this value we assumed that the height of Mount
Washington (1907 m) is the same in our new (moving) reference frame as it
was in our old (stationary) reference frame. Therein lies the problem. Our
measurement of length depends on the motion of the reference frame.

Length Contraction .

Normally, we expect objects to remain stationary as we measure their length.
We lay the pole down next to the meterstick, mark the left end, look over,
and mark the right end. Implicit in our actions is the belief that the left end
does not move while we measure the right end. As long as we measure ob-
jects that are stationary relative to ourselves, our assumption is valid. But
when the pole moves past us, we have to invent another strategy for measur-
ing its length. We must locate the two ends of the pole simultaneously, that is,
at the same time. Ultimately, our measurement of length depends on our con-
cept of simultaneity.

To understand the limitations that simultaneity places on our measure-
ments of length, contrast Barbara’s and Allen’s measurements of the length of
a pole. Figure 4-7 shows Barbara holding a pole as her spaceship moves past
Allen. As she holds the pole up next to a meterstick, she sees the two ends of

Figure 4-7

Allen sees two parts of
the pole simultaneously,
but the pole is mea-
sured to be shorter than
in Barbara’s reference
frame.
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the pole simultaneously and measures its length. On earth, Allen looks up and
sees the pole simultaneously as well. However, since the spaceship moves
past him as he looks, Allen does not see the pole exactly as Barbara does.
Light from the left end reaches him before light from the right end, for ex-
ample. As shown in the figure, this effect causes Allen’s measurement of
the pole’s length to be smaller than Barbara’s measurement. Rapidly moving
objects are shorter to the stationary observer. The change in length that oc-
curs when objects move at speeds near the speed of light is called length
contraction.

Table 4-3 allows you to compare the length of the object an observer
measures in his or her own stationary reference frame with the length he or
she observes in reference frames moving past at different speeds. The speed
of the moving reference frame has been described in meters per second and
as a fraction of the speed of light. At relatively low speeds, like 30,000 m/s,
the difference in length is not noticeable. Clearly, we never notice length con-
traction in everyday life. At speeds near the speed of light, however, length
contraction becomes significant. An object that is 10 m long in a reference
frame stationary relative to the observer will be 6 m long when moving past
the observer at 80% the speed of light.

Table 4-3 Length Contraction

00001 3 X 10° 1.00 , 0.999999995
0.001 - 3X10° 100 0.9999995
0.01 - 3x 108 1.00 0.99995
01 3% 107 1.00 0.995
0.2 6 X107 100 0.98
04 S 12X10° - 1.00 0.92
0.6 1.8 X 10° 1.00 0.80
058 24X 10° 1.00 0.60
0.9 2.7 X 10° 1.00 044
099 297 X 10° 1.00 0.14
0.999 2997 X 10° 1.00 0.04.

0.9999: 29997 X 10° - 1.00 001
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STEP FURTHER—MATH &S50

FISK’S DISK

As we did for time dilation, we can develop an equation that relates the lengths & Length in moving
measured in the different reference frames. reference frame
Length length of i ; Length in
measured for = stationary \/ 1-— (M—ty % stationary
. . . speed of light reference
moving object  object frome
Called the Lorentz-FitzGerald contraction, after two physicists who first proposed X
it, this expression tells us that the length Allen measures as Barbara moves past, =1 /1~ (?V)z
called L', is equal to the length he would measure if Barbara were stationary :
relative to him multiplied by v1 — v?/c°. ; )
We use this expression to compare the measurements Allen makes for the Speed of

light

two reference frames. Suppose Barbara has a 2-m rod in her spaceship. When
Barbara is stationary relative to Allen, he reports that the rod is 2 m long. When
the spaceship moves past him at 80% the speed of light (v = 0.8¢), Allen mea-
sures a length of

L'=LV1—v/d =2m) \[1 ~ ((—0'8’(3 X 10° m/s))2

Speed of moving
reference frame

{3 X 10°m/s)
=12m

A rod that is 2 m long in a stationary reference frame is 1.2 m long if you measure it
in a reference frame moving past you at 80% the speed of light. What if Barbara
goes even faster? At 90% the speed of light, the 2-m rod contracts to 0.88 m. At
99.9% the speed of light, it measures 0.08 m. What do we have left at 99.99% the
speed of light?

B8— 99— g gog= P

V=0 v v v v Y

There was a young fencer
named Fisk *
Whose thrust was
exceedingly brisk
So fast was his action
The Lorentz-FitzGerald contraction
Reduced his rapier
to a disk
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Figure 4-8

Only the dimensions
along the direction of
motion are affected.

(a) In a reference frame
moving down, the
height of Mount Wash-
ington changes but the

width remains the same.

(b) In a reference frame
moving along the
earth’s surface, the
width changes but not
the height.

Figure 4-9

Like time dilation, length contraction is symmetric. If Allen reports that a
10-m pole is only 6 m long as Barbara moves past him at 80% the speed of
light, Barbara reports that a 10-m pole in Allen’s reference frame is only 6 m
long as she moves past him at 80% the speed of light. If we return to our
experiment with the muons, this tells us that Mount Washington is shorter as
we move with the muons at 99.2% the speed of light. If we actually per-
formed the calculation, Mount Washington would be only 241 m high. Now,
let us determine the time it takes the muons to travel from the top of Mount
Washington to sea level. The duration of the descent is the distance the
muons travel divided by their speed—(241 m)/(3 X 10® m/s) = 0.81 us. It
would take 0.81 us to make the complete trip from top to bottom, less than a
single half-life of muons. This is consistent with the 870 muons we measure at
the bottom of Mount Washington.

Length contraction occurs only in the direction in which the object (or the
reference frame) is moving. As shown in Figure 4-8(a), Mount Washington ap-
pears shorter but the same width as we move downward toward the surface
of the earth. If we were to move along the surface of the earth at the speed of
a muon {Figure 4-8(b)) Mount Washington would appear thinner, but its height
would remain the same. Only the dimension in the direction of motion varies
with the relative speed of the object.

SELF-CHECK 4E

- A window in Barbara s spaceshlp is 2 m long and 3" m hrgh (see F:g- W
* ure 4-9). What length and height does. Allen measure:for the window -

. if Barbara: passes by him at the following speeds 0 100 4 0.8, and S
0.9 times the speed of hght'ﬂl ; :
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HOW FAST IS FASTEST?

The speed of light is the greatest speed we have encountered. The special
theory of relativity suggests that the speed of light is the upper limit to all
motion. Nothing can move faster. To understand the reasons for believing that
such a limit exists, consider another thought experiment.

Suppose you are playing center field in a baseball game. The batter
swings and sends a fly ball out to you, as illustrated in Figure 4-10. In order
for you to see the ball, sunlight must be reflected from the baseball into your
eyes. Since light travels very, very fast relative to the baseball, the reflected
light reaches your eyes almost instantaneously and you can track the ball
along its path. Imagine what you would see if the baseball traveled faster than
the speed of light. Light travels at a constant speed, so the light that travels
the shortest distance will reach you first. Because the ball moves faster than
light, the ball reaches you before the light reflected from the ball at points 1,
2, 3, or 4. In fact, you must catch the ball before you see it. After catching it
you would see the light reflected from points 4, 3, 2, and 1—in that order.
You would catch the ball, then see it travel back to the batter. Finally, the
batter would hit it.

Absurd? Yes! This result violates the basic logic of causality. A ball trav-
eling faster than light puts the cart before the horse. The effect (catching the
ball) occurs before the cause (hitting the ball). Either we must reject cause and
effect or conclude that all objects travel more slowly than light. So far, experi-
ments agree with these expectations. No one has discovered an object that
exceeds the speed of light—3 X 10® m/s, or 186,000 miles per second.

Faster speeds? Shorter blocks? Let’s return to the bicyclist whose de-
lightful argument opened the chapter. In writing this story, George Gamow
imagined what the world would look like if light moved at ordinary speeds—
such as 5 m/s. Relative to this speed of light, the bicyclist certainly could

Figure 4-10

It a baseball could
travel faster than light,
the fielder would have
to catch the ball before
he knew that it had
been hit.
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“That 187,000 miles per second makes me a bit skeptical
about the whole thing.”

pedal hard enough to see the blocks get shorter or even time slow down. But
do the blocks really get shorter and does time really slow down? Our con-
cepts of the length of a city block and the duration of a second—of space and
time—depend on motion. Gamow’s bicyclist catches one glimpse of space-
time. Standing on the street corner, we catch another. Neither space nor time
is absolute.

CHAPTER SUMMARY

Our experiences with objects at low speeds suggest that while position, time,
and motion are relative concepts, relative speed, duration, and length seem to
be constant in all reference frames moving at constant velocity relative to each
other. In an experiment performed in 1887, Albert Michelson and Edward
Morley showed the speed of light to be constant in all reference frames. This
contradicted our low-speed concept of relative velocity. In 1905 Albert Einstein
proposed the special theory of relativity. By assuming that the principle of rela-
tivity (Chapter 3) is valid and that the speed of light is constant in all reference
frames, Einstein revised our concepts of relative velocity, simultaneity, time
duration, and length.

The changes made by the special theory of relativity are summarized
below:

Low-Speed High-Speed
Concept Definition Definition
Relative Relative velocity is Relative velocity
velocity the same in all changes with the

reference frames. motion of the

reference frame. The
relative velocity can
never exceed the
speed of light.




Events that are
simultaneous in one
reference frame are
simultaneous in
another.

Simultaneity

Time Duration of an event
is the same in all
reference frames.

Length Length of an object
is the same in all

reference frames.

Answers to Self-Checks

Simultaneity depends
on the motion of the
reference frame. At
high speeds, events
seen as simultaneous
in one reference
frame will not be
simultaneous in a
reference frame
moving at a high
speed relative to it.

Time dilation: An
observer sees time
moving more slowly
when the event
occurs in a reference
frame moving past
him or her.

Length contraction:
An observer
measures the length
of an object to be
shorter in its
direction of motion.

At low speeds these new concepts are identical to those introduced in Chap-
ters 1, 2, and 3. At speeds near the speed of light, the new concepts predict
radically different results. Since we have little experience at such speeds, the
concept that time slows down or that objects contract seems strange. Mea-
surements at high speeds, however, demonstrate the validity of the theory.
The special theory of relativity proposes that the speed of light is the
limit beyond which objects cannot move faster. If we imagine that objects
move faster than light, then we see an event after its cause, and our logic
of causality is destroyed. Consequently, we accept the speed of light as the

upper limit for motion in the universe.

ANSWERS TO SELF-CHECKS

4A. Low-speed definition: speed of light is 4 X 10® m/s. The high-speed
definition predicts that the observer measures the speed of light to be
3 X 10® m/s, the same as the speed of light relative to the earth. It does

agree with Einstein’s second postulate.

4B. Barbara and Allen do not agree. Barbara reports that light reaches the
two ends of the train simultaneously. Allen reports that it does not. Be-
cause of the motion of the train past him, Allen reports that light reaches
the back of the train before it reaches the front.

79
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4C. 0.1 speed of light, 3.015 months; 0.4 speed of light, 3.27 months;
0.8 speed of light, 5.00 months; 0.9 speed of light, 6.88 months.

4D. In Allen’s reference frame, 5 months elapse before Barbara picks her
first ripe tomato. In Barbara’s reference frame, 5 months elapse before

Allen picks his first ripe tomato.

4E. The spaceship moves in the direction of the length of the window. Con-
sequently, the window remains 3 m high. The length of the window de-
pends on the speed of the spaceship: 0.1 speed of light, 1.99 m; 0.4
speed of light, 1.84 m; 0.8 speed of light, 1.20 m; 0.9 speed of light,

0.88 m.

PROBLEMS AND QUESTIONS

A. Review of Chapter Material

Al.

A2

A3.
A4,

A5,

A6.

A7.

AS8.

A9.

A10.

What was the importance of the Michelson-
Morley experiment to the special theory of
relativity?

State the two postulates of the special the-
ory of relativity.

What is a thought experiment?

Describe what happens to the relative ve-
locity between two objects as their veloci-
ties relative to the earth approach the ve-
locity of light.

Describe a thought experiment which
shows that two events which are simulta-
neous in reference frame A are not simul-
taneous in a second reference frame mov-
ing at a constant velocity relative to A.
State the equation for time dilation. De-
scribe how measurements of the duration
of an event vary with the velocity of the
reference frame relative to the observer.
Describe both a thought experiment and
an actual experiment which show that the
duration of an event changes in reference
frames moving at high speeds.

What do we mean when we say that time
dilation is symmetric?

State the equation for length contraction.
Describe how measurements of length vary
with the velocity of the object relative to
the observer.

Why do we think that light cannot travel
faster than the speed of light?

B2.

B3.

B4.

B5.

Bé6.

. Using the Chapter Material
B1.

Edward is flying past you at a velocity of
200,000 km/s, east. He reports that the
lights on the front and back of his space-
ship are flashing simultaneously. Do you
see them flashing simultaneously? When
Edward is directly north of you, which one
will you see flash first—front or back?
Fran looks at the lights on Edward’s space-
ship (Problem B1). She reports that the
ship’s lights are flashing simultaneously.
What is her velocity relative to Edward?
What is her velocity relative to you?
Barbara and Allen are moving toward each
other at speeds (measured relative to the
earth) that are two-thirds the speed of light.
What is their relative velocity?

During the flights to the moon the Apollo
spacecraft averaged 55,000 m/s. If the as-
tronauts had measured the speed of light
reflected from the moon, what value would
they have obtained?

A muon moving at 80% the speed of light
is located at the top of Mount Everest (alti-
tude = 8848 m). In the muon’s reference
frame, how long is the distance to sea
level?

Suppose that the muon experiment had
been conducted with muons moving at
speeds of 0.6 the speed of light. What
would be the half-life measured for these
muons by an earthbound observer?



B7.

BS.

B9.

B10.

Astronomers observe distant galaxies which
are moving away from the earth at speeds
of 270,000 km /h. At this speed an atom’s
vibration, which takes 1 us on the earth,
takes 2.29 us when observed in the moving
galaxy. Suppose an astronomer in the dis-
tant galaxy is looking back at the earth.
What time measurement would she make
for this same vibration on earth? What
measurement would she obtain for an atom
sitting motionless next to her?

Three identical high-speed cars move past
us. We see them as shown in Figure 4-BS8.
Which car is moving most rapidly? Which is
moving most slowly?

A circle with a diameter of 1 m is moving
to your right. Sketch the shape of the circle
for each of the following speeds (given as a
fraction of the speed of light): 0.4, 0.8, 0.9,
and 0.999.

An inventor claims that he can build an
airplane which will travel from New York
to Los Angeles at three times the speed of
light. He asks you to invest money in his
company to build his airplane. Explain why
this might be a bad investment.

C. Extensions to New Situations

Cl.

Ned is holding a very long board as shown

in Figure 4-C1. As Mary speeds by at 0.9

the speed of light, Ned drops the board so

that in his reference frame both ends reach

the ground at the same time.

a. What is the length of the board in Mary’s
reference frame?

C2.

C3.
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b. In Mary’s reference frame, do both ends
reach the ground simultaneously? Why
or why not?

c. If the answer to (b) is no, which end
reaches the ground first?

d. Sketch a strobelike drawing of how the

board must look in Mary’s reference
frame as it falls.

Time dilation causes a difference in aging

between high-speed space travelers and

earthbound people. Consider a spaceship
traveling at 0.99 the speed of light relative
to the earth.

a. The space traveler’s heart beats once
per second as measured by the trav-
eler. What time elapses on earth be-
tween the heart beats?

b. In 1 h, earth time, whose heart beats
the most—the earthbound person or
the space traveler?

¢. The number of times the heart has beat
is a good measure of aging. With each
heartbeat we get a little older. In the
earthbound reference frame, which per-
son is aging more quickly—the earth-
bound observer or the space traveler?

d. Answer questions (a), (b), and (c) from
the reference frame of the space trav-
eler.

The twin paradox is related to the result of

Problem 4-C2. Jackie remains on earth

while her twin brother Steve takes a high-

speed space trip. He travels away from
earth at 90% the speed of light, turns
around, and returns to earth at 90% the
speed of light. While traveling at a constant
speed, Jackie and Steve each observe the
other to be aging more slowly. Using the
special theory of relativity, each would
conclude that the other would be younger
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when they meet again. Thus, we have
an impossible situation. Experiments with
very sensitive clocks show that Steve will
be younger. This result does not disagree
with the special theory of relativity be-
cause one of its postulates is violated dur-
ing the trip. Which one? How is it violated?
Here is another paradox. A very high-
speed airplane with a brave (or foolish)
pilot is to fly through a tunnel in a moun-
tain. When measured in a reference frame
stationary relative to the tunnel, the air-
plane is longer than the tunnel. From the
airplane’s reference frame, the tunnel be-
comes even shorter at high speeds. In the
earth’s reference frame, an observer closes
doors on both ends of the tunnel while the
airplane is inside. This event could never
happen in the airplane’s reference frame.

To see how this paradox is resolved, an-

swer the following questions.

a. The two doors are closed simultaneously
in the earth’s reference frame. Do the
doors close simultaneously in the air-
plane’s reference frame?

b. Which door closes first in the airplane’s
reference frame?

¢. Use the results of (a) and (b) to describe
the order of events as the airplane flies
through the tunnel.

d. How does the dependence of simul-
taneity on reference frame resolve the
paradox?

The volume of a box is its length times

its width times its height. In a reference

frame stationary relative to a box, its di-

mensions are: length = 2 m; width = 4 m;

height = 6 m.

a. What is the volume of the box in this
reference frame?

b. What volume do you measure when the
box moves at 0.8 the speed of light rela-
tive to you in the direction of its length?

c. What volume do you measure when the
box moves at 0.8 the speed of light rela-
tive to you in the direction of its height?

The nearest star, Alpha Centauri, is 4.3

light years (4.1 X 10'¢ m) from the earth.

a. How long does light require to travel
from Alpha Centauri to earth?

b. Suppose space travelers move from
earth to Alpha Centauri at the top

C7.

Cs.

speed of the space shuttle, 350 km/h,
How long in earth time would the trip to
Alpha Centauri take?

c. How long, earth time, would the trip
require if the travelers moved at 0.8 the
speed of light?

d. How far would Alpha Centauri be in
their reference frame?

e. How long, in the space traveler’s time,
would the trip take?

f. Do trips to nearby stars seem feasible
at speeds close to the speed of light?
To see if trips to other galaxies might be
possible, answer the questions in Problem
4-C6 for the Andromeda Galaxy, which
is 2,200,000 light years (2.1 X 10%? m)

away.

Suppose two muons are coming toward

each other. One is moving relative to the

earth at 0.8 the speed of light, east, and
the other is moving relative to the earth at

0.8 the speed of light, west.

a. What is the relative velocity between
the two muons?

b. What will be their relative velocity if
they move away from each other rather
than toward each other?

D. Activities

D1.

D2.

The quotation which opened this chapter
is taken from “Mr. Tompkins in Wonder-
land” by George Gamow. In this story, Mr.
Tompkins dreams that the speed of light is
10 mi/h. Describe some of the effects Mr.
Tompkins will see as he pedals his bicycle
around Wonderland. Then, read the story
and compare your description with Dr.
Gamow’s. (The story has been published
as part of Mr. Tompkins in Paperback
{Cambridge University Press, 1969.))
Gene Rodenberry, the creator of the sci-
ence-fiction television and film series Star
Trek was accused of not understanding
physics because starships in the series
moved at speeds greater than the speed of
light. Rodenberry replied that he had no
choice. If they did not move faster than
light, the starships could never travel be-
tween galaxies. Discuss his answer using
the results of Problem 4-C7.





