Position and Change

The question of different points of view is a very basic one. Some people like
modern art; others call it scribbling. Some like the latest movie; others find it
mediocre. When we deal with opinions, it is rare that we ever share com-
pletely another’s point of view. When we describe position, however, we can
agree. All the Wizard (Figure 1-1) had to do to avoid confusion was turn
around and face the two baskets in the same direction as the unfortunate
citizen. Scientists consciously choose concepts that enable them to share
points of view-—to agree upon what they observe.

We begin studying motion by defining position and change in position.
This chapter will show how reference objects combined with reference direc-
tions provide us with a reference frame with which to agree upon the position
of an object. In order to be more precise, we will introduce coordinate sys-
tems, which incorporate the process of measurement into reference frames.
Distance and displacement describe the change in position of a moving object.
These last two concepts are the foundation for our later descriptions of
motion.
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Figure 1-1

DESCRIBING POSITION

Every day we describe the position of many objects. It’s on the table. She's at
the office. Seaton Hall is north of the Student Union. All these statements
describe the location of one object using another object and some reference

direction.

Reference Objects and Reference Directions

To convince yourself of the need to describe one object’s position in terms of
another object, try a short exercise. Figure 1-2 shows a black dot inside a
square. Without referring to any other object, try to describe the position of
the dot. You probably find the task impossible. You might say that the dot is
in the upper center of the square, but then you have used the square itself. If
you now try the same exercise using objects inside the square, the task is
much easier! You might say that the dot is directly above the person.

The exercise using Figure 1-2 shows that we need other objects to de-
scribe an object’s location. A reference object is anything used to describe

. Figure 1-2

We use the person as a
reference object to
describe the position
of the dot.
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Figure 1-3

Descriptions depend on
the orientation of the
reference object.

the location of another person or thing. When you say that the dot is directly
above the person, you are using the person as the reference object. If you tell
a friend that the library is next to the Fine Arts Building, you are using the
Fine Arts Building as your reference object. Whenever you use reference
objects, you describe another object’s position relative to the reference object.
You describe the position of the dot relative to the person and the position of
the Fine Arts Building relative to the library.

When two people choose the same reference object, they still may not
agree in their description of the location of another object. You can readily
see this if you consider Figure 1-3. First describe the location of the dot using
Keith as the reference object. Then describe the dot’s location as Keith would
describe it using himself as the reference object.

You: The dot is to the left of Keith.
Keith: The dot is above me.

In both cases Keith was the reference object, yet the descriptions of the
dot’s location were different. Here the differences arise from the terms above,
below, left, and right. Keith used himself to establish above and below. You
used yourself to establish left and right. You and Keith each used Keith as the
reference object but your own bodies to establish the reference directions.
If you turn the book so that Keith is right side up, your use of reference direc-
tions will agree with Keith’s. Then, both of you will report that the dot is
above Keith.

In real life, as in Figure 1-3, we use our own bodies to establish the refer-
ence directions right and left. The confusion this causes is apparent in the
Wizard of Id cartoon (Figure 1-1). In contrast to the subjectivity of right and
left, the reference directions up and down seem more objective. Gravity de-
fines our sense of up and down, so that the terms mean essentially the same
to everyone. Down is the direction things fall. Up is the direction opposite to
down. Thus, the situation in Figure 1-3 was rather contrived. Normally, one
person’s up and down would be the same as another’s.
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The space program has given us an opportunity to explore our sense of
up and down in a weightless, or gravity-free, environment. The photograph of
the Skylab astronauts (Figure 1-4) looks strange because the things in Skylab
are not being pulled toward the earth. Thus we have no clues to establish
“right side up.” When asked about his sense of orientation in space, Astronaut
Joseph Kerwin responded:

You do have a sense of up and down, and you can change it in
two seconds, whenever it’s convenient for you. If you go from one
module to the next and you're upside down, you say to your brain
“I want that way to be up” and your brain says “OK then that way
is up.” It's strictly eyeballs and brain.

Once the physical sensation of gravity is removed, up and down are as subjec-
tive as left and right.

Reference Frames

Since we must be able to describe thg positions of objects in weightless space
as well as here on earth, we need to rely upon more than “eyeballs and
brain.” In order to agree upon the location of an object, we have to establish a
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Figure 1-4

common reference frame. A reference frame consists of the reference ob-,

ject and the reference directions used in our description. When we say that
Seaton Hall is north of the Student Union, the reference frame consists of Sea-
ton Hall and the compass direction north. Once we define our reference frame,
others should be able to place themselves in that same reference frame and
agree upon the location of Seaton Hall.

While the strict definition of a reference frame requires both a reference
object and a set of reference directions, ordinarily we just mention the refer-
ence object. “It’s on the table” and “she’s at the office” both identify reference
objects—the table and the office. The terms on and at, however, imply a set
of commonly agreed-upon reference directions. This works fine as long as we
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are all in the same earth-based reference frame; but, as illustrated by the
Wizard of Id cartoon, assumed reference directions can cause problems.

When we describe an object’s location differently from someone else, we
usually do so because we have chosen different reference frames. There is no
end to the number of reference frames we can invent. Given the standard set
of reference directions implicit in our vocabulary, we can invent as many
reference frames as there are reference objects. “John is standing five meters
west of the tree” and “John is standing two meters north of the house” could
both be describing the location of the same person, but from two different
reference frames. In the first, the tree defines the reference frame; in the
second, the house defines the reference frame. Similarly, statements like “Ed
is standing five meters west of the tree and Mary is standing two meters north
of the house” tell us nothing about where Ed is relative to Mary. Each descrip-
tion uses a different reference frame.

Ordinarily we can resolve these differences by agreeing on one of the
reference frames or by inventing a new reference frame common to the two
descriptions. We might both describe John’s location relative to the tree, agree-
ing to use the same reference frame. Or we might describe where the tree is
relative to the house, allowing us to invent a common reference frame in
which to describe John’s location. Either solution would enable us to agree on
our descriptions. The important characteristic of reference frames is that they
allow people to describe position and change from a common point of view.

SELF-CHECK 1A

For each statement below, ldentlfy the reference frame used and i
‘whether the reference directions are stated or implied. Is the same
: reference frame used for each pair of statements"

"a. The book is lying on the nightstand.
*  The book is next to the window. :

b. Venus is 20° north of the western honzon
The moon is ‘about 25° north of the western horizon.

5 c. - The Student Umon is north of the berary
The Fine Arts Buxldmg is north of the. Student Umon

COORDINATE SYSTEMS

Even with a common reference frame, our descriptions of position may still be
imprecise. Suppose [ tell you that the flowers are a little to the right of and
slightly higher than the book. Missing here is a precise description of distance.
How far to the right is a little? How much higher is slightly? Coordinate sys-
tems, which define distance as well as direction, allow us to be more precise.
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Adding Measurement

L.et’s return to the dot, this time without the square. Figure 1-5 shows the dot
amidst a series of lines. Use the lines to describe the location of the dot.

Using the convention of left and right and up and down while facing the
page, you could say that the dot is at the intersection of the third line from
the left and the fourth line from the bottom. Someone else might describe it as
the intersection of the third line from the right and the third line from the top.
Using the numbers associated with the lines allows us to establish immediately
a common reference frame. Now we can say that the dot is at the intersection
of the vertical line marked 3 meters and the horizontal line marked 4 meters.

The numbered lines combined with the reference directions vertical and
horizontal provide a reference frame called a coordinate system. A coordi-
nate system is a reference frame that shows units of measurement for each
of the directions, or dimensions. Each number, or coordinate, describes
the location of an object along one dimension. The reference object for the
entire system is the point from which all others are measured, at the intersec-
tion of the lines marked 0. This point is known as the origin of the coordinate
system.

A variety of coordinate systems can be invented. Typically each system
is named by the number of dimensions it includes and the orientation among
those dimensions. Because two coordinates, one for the vertical dimension
and one for the horizontal dimension, are required to describe a position, this
particular coordinate system is two-dimensional. Since the lines in Figure 1-5
form small rectangles, it is called a rectangular coordinate system. The com-
plete name of our reference frame is a two-dimensional rectangular coordi-
nate system.
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Figure 1-5

Numbered lines provide
a more precise descrip-
tion of the dot's loca-
tion. Distances along
the coordinate axes are
measured relative to the
origin.
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Coordinate systems are not restricted to two dimensions nor to lines at
right angles to one another. Football players care only about the distance to
the goal line. Their coordinate system is one-dimensional. Hikers, however,
need to know whether their trail goes over or around the mountain. Topo-
graphical maps add contour lines to give us a three-dimensional map of the

Figure 1-6 terrain. A magnetic compass describes orientation about a reference circle. Its
Everyday uses of coordinates are expressed in degrees. Figure 1-6 shows a few of the many
coordinate systems. coordinate systems we invent to help us agree on the location of objects.




Coordinate Systems

Using Rectangular Coordinate Systems

Physicists frequently use a two-dimensional rectangular coordinate system
similar to that shown in Figure 1-5. The two lines that define the reference
directions of the cocrdinate system and intersect at the origin are called the
coordinate axes. Each coordinate axis has a scale along which distances
from the origin can be measured. Scales are chosen for convenience and need
not be the same for both axes. The orientation of coordinate systems can be
chosen at will, but we generally use ocurselves as the guide. If you hold a co-
ordinate system so it faces you, up on the system is the same as up for you;
right and left mean the same as your right and left. By convention, the hori-
zontal and vertical dimensions are frequently calied the x- and y-dimensions.

In using this coordinate system, we adopt a shorthand notation to de-
scribe position. The location of an object is given by two numbers with the
appropriate units, separated by a comma: (10 meters, 5 meters) (meters are
abbreviated m). The first number and unit gives the distance along the hori-
zontal, or x-axis; the second gives the distance along the vertical, or y-axis. In
Figure 1.5, the square is located at (3 m, 6 m).

The process of establishing a coordinate system with an origin as the
reference object, coordinate axes to define reference directions, and mea-
sured distances to add precision is the physicists’ way of defining the position
of an object. To turn the statement around, the position of an object is de-
fined by the x- and y-coordinates of the object in a coordinate system in which
the origin and the orientation of the coordinate axes have been specified.
Admittedly longer than a definition like “on my right,” such a description is
clearer because it allows different observers to agree upon the position of any
object.

SELF-CHECK 1B

Use the shorthand notation to describé the position of the triangle in.
- Figure 1-5.- R : - y

BEETLE BAILEY

EVEN ZERO KNOWS iF YOU STAND IN FRONT
I'M RIGHT! WHICH OF MY FATHER'S BARN,
WAY IS NORTH?Z NORTH 15 RIGHT OVER

THE HENHQUSE

© King Features Syndicate, Inc,

Figure 1-7
What is Zero's
coordinate system?



10 Chapter 1. Position and Change

Figure 1-8

A route followed in
traveling from P Street,
First Avenue to H
Street, Fifth Avenue in

northern Salt Lake City.

DESCRIBING CHANGES IN POSITION

If their purpose were only to describe fixed positions, coordinate systems
would be useful to mapmakers and geographers but of comparatively little
value to physicists and astronomers, who deal with things in motion. But mo-
tion involves a change in position, and coordinate systems help us describe
these changes.

Consider an everyday example: moving about a city. Figure 1-8 shows
a map of the northern section of Salt Lake City. Suppose you ride from P
Street, First Avenue to H Street, Fifth Avenue along the route sketched. One
way to describe your change in position would be to describe the route. “I
started at First and P, rode to First and N, then to Fifth and N, and finally to
Fifth and H.” Another might be to describe the total distance you traveled
along the route, 1.6 kilometers (km). A third way would be to describe the
distance from P Street, First Avenue to H Street, Fifth Avenue “as the crow
flies.” As shown in Figure 1-8, this straight-line distance is 1.2 km. All three
descriptions provide information about your motion, but the types of informa-
tion are quite different. We will discuss the last two descriptions—distance
and displacement—in more detail.
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Distance

We use the concept of distance to describe the length of the route you fol-
lowed, 1.6 km. Distance is defined as the length of path traveled when an
object changes position. We can measure distance in one of two ways. When
traveling by car, we can use the beginning and ending cdometer readings. The
difference between these two numbers is the distance we have traveled. How-
ever, using the rectangular coordinate system provided by the streets and
avenues, we can also measure the distance along your route by counting the
number of blocks you traveled and multiplying this number by the length of
each block. The first method involves continuous measurement of the path
and does not depend on knowing where you started or stopped. The second
involves calculating the length of the path from your known starting and
stopping positions.

In a conventional rectangular coordinate system, distance is usually cal-
culated from the coordinates that define your route. Figure 1-9 shows a route
followed by a student in moving from A to B in a library. A coordinate system
is superimposed on the route to allow us to measure distances. The student
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moved from (1 m, 2 m) to (1 m, 5 m) to (3 m, 5 m) and finally to (3 m, 2 m).
We can find the distance traveled by adding the distance of each leg of the
trip. The distance traveled in the first leg is 5 m minus 2 m, which equals 3 m.
Similarly, the distance traveled in the second leg is 3 m minus 1 m, which
equals 2 m. For the third leg, it is 5 m minus 2 m, which equals 3 m. The
distance traveled over the entire route is 3 m + 2 m + 3 m, which equals
8 m. We can calculate the distance traveled in this manner as long as the
route is along the lines of a rectangular coordinate system.

Displacement

You are walking down the street when someone asks where the nearest post
office is. “Oh, that’s easy,” you reply. “It’s about three kilometers.” If you
walk on at this point, the stranger will probably ask someone else. “Three
kilometers” is not very useful. “Three kilometers east” would have been much
more helpful.

We use the concept of displacement to describe both the distance trav-
eled as the crow flies and the direction in which the motion occurred. The dis-
placement of an object is the distance and direction along the straight-line
path from its initial position to its final position. A statement of displacement
includes a straight-line distance and a direction, written as: straight-line dis-
tance, direction. In Figure 1-8, the displacement is 1.2 km, northwest. Quanti-
ties such as 30 km, north and 4 m, to your left are displacements. Thirty kilo-
meters is not a displacement; neither is south.

The distinction between distance and displacement can be made clearer
by returning to the library example in Figure 1-9. The straight-line distance
between A and B is 2 m. When you arrive at B, you are 2 m east of A. The
displacement is 2 m, east, even though you traveled a distance of 8 m to get
there.

One way to distinguish between the terms distance and displacement is to
think about the old stereotype of the expectant father. While his child is being
born, he paces back and forth in the waiting room. He moves from one posi-
tion to another and back again. With each change of position, he travels a dis-
tance of a few meters. Then he goes right back to where he started. By the
time the baby is born, the father may have moved through a distance of
several thousand meters. But his displacement is zero because he always
comes back to where he began.

SELF-CHECK 1C

A car drove 3 km east and then 2 km in a different: directlon Two L
. possible routes are illustrated in’ Figure 1-10. Calculate the dlstance e
and dxsplacement for each route.:
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Vectors and Scalars

Distance and displacement are related concepts, but they have an important
difference: direction. Distance is specified by a number with units, such as
30 km. Displacement requires a number, a unit and a direction, such as
30 km, east. This distinction occurs so frequently in physics that we define
terms to distinguish the two types of quantities. A scalar is any quantity
which can be completely described by a number and a unit. Distance is a
scalar. A vector is any quantity which can be completely described by a num-
ber, a unit, and a direction. Displacement is a vector. The number and unit are
often referred to as the magnitude of the vector. The magnitude of a displace-
ment of 50 km, north, is 50 km. Quantities like speed, time, and temperature
are scalars. Force and momentum, two quantities we will examine in more de-
tail in later chapters, are both vectors. To help you recognize vector and
scalar quantities in equations, we designate vectors by boldface type (such as
d for displacement) and scalars by regular type (such as [ for distance).

The addition of direction does more than simply change a scalar into a
vector. Distance and displacement both describe a change in position. But, as
illustrated by the stereotype of the expectant father who paces back and forth
but never goes anywhere, these descriptions provide different types of infor-
mation. Displacement uniquely locates the position of an object but tells us
little about the path it took in reaching that position. A displacement of
30 km, north, means simply that the object is 30 km north of its starting loca-
tion. By contrast, distance provides us information about the length of path
followed but no unambiguous information about the object’s final location.
“The car traveled 30 km” tells us nothing about where to find the car, al-
though we do know how far the car actually traveled. Vectors and scalars are
clearly two different types of quantities.

Figure 1-10

13
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STEP FURTHER—MATH

WHAT TO DO WHEN
THE CAR TURNS A CORNER

The two examples in Self-Check 1C are relatively simple since the car either
continued in the same direction or turned around. But cars do turn corners. In the
route shown in the figure, the driver traveled 3 km east and then 2 km north.
Here the displacement is the straight-line distance from the tail of vector A to the
tip of vector B. Since east and north are at right angles to one another, the
displacement is actually the hypotenuse of a right triangle whose other two sides
are 3 km, east, and 2 km, north. (The hypotenuse is the side of a right triangle
that is opposite the 90° angle.) A bit of mathematics enables us to determine the
length of the hypotenuse from the other two sides—the net displacement from the
two legs of the trip.

As you may remember, the Pythagorean theorem describes the relationship
among the three sides of a right triangle. The square of the hypotenuse is equal to
the sum of the square of each of the other two sides. Applying this to the route
shown:

(Length of hypotenuse)* = (length of side X)* 4+ (length of side Y)*
Length of hypotenuse = m

V(9 km® + 4 km?)

= V13 km

= 3.6 km

The displacement is 3.6 km, northeast.

While this procedure works for one corner, think about what would happen
if we drove 3 km east, 2 km north, and then 2 km west—turning two corners
instead of just one. Even a single corner can cause problems if it is not at a right
angle. Determining the displacements in these situations becomes a little more
complex. In the next section we will present a graphical technique for estimating
displacements when the car turns lots of corners or moves along curves. If you
find some of these discussions tough going, don't feel dismayed. While turning
corners and going around curves is a daily occurrence, calculating displacements
is not. What is important is that you realize what displacement describes and that
there are mathematical techniques for calculating it.
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Working with Vectors

Since vectors have a direction associated with them, arithmetic operations like
adding, subtracting, multiplying, and dividing are a little different. Three of
these, adding vectors, subtracting vectors, and multiplying a vector by a
scalar, crop up several times in later chapters. Let’s illustrate the procedure
we use with a few examples involving displacement.

In the process of adding vectors, we must keep track of the direction
associated with each. A displacement of 1 km, east, added to a displacement
of 2 km, west, does not lead to a total displacement whose magnitude is 3 km.
The simplest way to add vectors is the tail-to-tip method, shown in Figure
1-11{a). In our example, an arrow is drawn to scale to represent each of the
two displacements. Since the magnitude of vector B is twice as great as the
magnitude of vector A, vector B is twice as long. The point at which each
arrow begins is called the vector’s tail. The point at which each arrow ends is
called the vector’s tip. To add the vectors, place them tail to tip so that the
tail of vector B lies at the tip of vector A. The sum of the two vectors, called
the net displacement, is a vector that goes from the tail of vector A to the
tip of vector B.

Some situations in which we need to add vectors are relatively simple.
When the two vectors are in the same direction, you can simply add the

A 8 -
Y
C j -
g — D
eio”
(a) (b)

Figure 1-11 (a) The tail of vector B is placed at the tip of vector A. The sum of the two
vectors is A + B, the vector that goes from the tail of vector A to the tip of vector B.
(b) Vector E + F is the vector that goes from the tail of vector E to the tip of vector F.
Vector G + H describes the sum of vectors G and H.

15
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SAVING A FEW STEPS?

Waiters and wait-
resses are very much
aware of the differ-
ence between dis-
tance and displace-
ment. They travel
long distances but al-
ways end up at the
same place that they
started—back in the

ers and waitresses.
His self-waiting table
utilized a large
mechanized circle of
shelves. The servers
(A) placed the food
on shelves (B) which
traveled past the din-
ers (C, D, and E).
When the customers

"esicceissnsesasasane ieeissciens Seseiiscisescsaase ................u@}'@

t e

kitchen. So, while
they may be very

tired at the end of
their working day,
their displacement

is zero. During the
nineteenth century,

William Lance

thought of a way to
decrease the distance
traveled by the wait-

saw something ap-
pealing, they picked
it off the moving
shelf. When finished, ik
they placed their

dirty dishes on the A

next empty shell. The
dishes returned to the
server (A), who sent
them back to the
kitchen. Thus, the

was small. Needless
to say, the waiters
and waitresses were

delighted!

distance traveled by

the dishes was huge,
but the distance trav-
eled by the servers

magnitudes of the two vectors. A displacement of 1 km, east, added to a dis-
placement of 4 km, east, leads to a net displacement of 5 km, east. When the
two vectors are in opposite directions, like C and D, you could get the result
by subtracting the two magnitudes. When the vectors are at right angles to
one another, the Pythagorean theorem (page 14) offers an algebraic way of
determining the sum of the two vectors. At other angles, however, the tail-to-
tip method offers the easiest way to determine the sum of the two vectors.
The magnitude of the net displacement can be determined by measuring the
length of its arrow to scale (Figure 1-11(b)).

Subtracting vectors takes advantage of the fact that subtraction is the
reverse of addition. Suppose we need to subtract two displacements, 1 km,
east, and 2 km, west. Vector A — vector B is the same as vector A +
{—vector B). Consequently, we can subtract vector B from vector A by add-
ing the negative of vector B to vector A. Figure 1-12(a) shows vector B and its
negative, —B. To find the difference between the two vectors, we add vector
A to the negative of vector B according to the tail-to-tip method. The resultant
displacement is 3 km, east {Figure 1-12(b)).

Multiplying and dividing vectors by scalars is much simpler. Suppose
your displacement is 2 km, east, and someone asks you to double your dis-
placement. Doubling the displacement would affect the magnitude of the dis-
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-8 A (=B)
@) (-8) O s
- A-B

Figure 1-12 To subtract two vectors, you add the negative of the second vector to the
first vector. (a) The negative of vector B, called —B, is a vector of the same length but
in the opposite direction.

(b) A — B is the same as A + (—B). Here A and (—B) are added using the taii-to-tip
method.

placement but not the direction. There is no such thing as “twice as east.” A
displacement that is twice as great is 4 km, east. A displacement that is half
as great is 1 km, east. Multiplying or dividing a vector by a scalar affects only
the magnitude of the vector. The direction remains the same.

Reference frames, coordinate systems, distance, and displacement de-
fine our concepts of position and change in position. In familiar examples,
these concepts seem almost commonsense. In complete definitions, they may
seem needlessly complex. As objects start moving, however, we find it in-
creasingly difficult to establish common reference frames, or common points
of view. The definitions become increasingly important to us.

CHAPTER SUMMARY

The position of an object must be described in terms of other objects, called
reference objects. Reference objects and reference directions make up a refer-
ence frame. In order for two people to agree on the location of an object, they
must describe the object’s location in terms of the same reference frame.
Coordinate systems are standard reference frames. Rectangular coordi-
nate systems are constructed from lines at right angles to one another. The
location of an object in a rectangular coordinate system is specified in terms of
distances from a single point, called the origin. By convention, we use a
shorthand notation in which the position is given by two numbers and units
separated by a comma. The first number and unit specifies the distance along
the horizontal axis; the second specifies the distance along the vertical axis.
The change in position of an object (its motion) can be described in terms

of distance or displacement. Distance is the length of the path traveled by an-

object in moving from its initial to its final position. Displacement is the straight-
line distance traveled by the object in moving from its initial to its final position
and the direction the object travels along that straight-line path. A scalar is
defined by a number and a unit; a vector is characterized by a number, a unit,
and a direction. The magnitude of a vector is its number and unit. Distance is
a scalar quantity; displacement is a vector quantity. Vectors can be added
using the tail-to-tip method. To subtract two vectors, we add the negative of
the second vector to the first vector. Multiplying or dividing vectors by a
scalar affects the magnitude of the vector but not its direction.

N
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ANSWERS TO SELF-CHECKS

1A. a. Two different reference frames are used—one defined by the night-
stand and the second by the window. Both descriptions are based on

implied reference directions.

b. The two statements use the same reference frame —the western hori-
zon. The reference directions have been stated.

¢. Two different reference frames are used—one defined by the Library
and the second by the Student Union. The reference directions have

been stated.

1B. The triangle is located at {5 m, 2 m).

1C. Route A: Distance is 5 km. Displacement is 5 km, east.
Route B: Distance is 5 km. Displacement is 1 km, east.

PROBLEMS AND QUESTIONS

A. Review of Chapter Material
Al.

A2,

A3.

A4.
A5,
Ab.
A7.

AS8.

Define the terms listed below: B1.

Reference object

Reference direction

Reference frame

Coordinate system

Rectangular coordinate system

Scalar

Origin

Position

Distance

Displacement

Vector

Tail-to-tip method

How do scientists avoid the “different point
of view” problem illustrated in the Wizard

of Id cartoon? B2.

In outer space astronauts do not feel the
effects of gravity. Which of our common
terms for directions lose their meanings in

outer space? B3.

How do coordinate systems improve our
ability to describe the location of an object?
List three ways you could use to describe
the change of position of an object.

How are displacement and distance simi-
lar? How do they differ?

How do scalars and vectors differ? Give an
example of each.

Why do we add vectors differently than
we add scalars?

B. Using the Chapter Material

In each sentence below, identify the refer-
ence object(s) used to describe the position
of the object.

a. You will find the diary in the upper
right-hand drawer of the chest of
drawers.

b. Sandwiched between Manhattan and
Long Island, Queens supports a sub-
stantial, largely commuter, population.

c. The fifth car from the corner has Ore-
gon plates.

d. The North Star is the first bright star
you reach as you trace the Big Dipper
and extend the line upward from the
bowl.

You tell a friend that a book is to the right.
She moves to your left to pick up the book.
Where is she relative to you? (There is
more than one possibility!)
A football player starts halfway between
two side boundaries on the 50-yard (yd)
line. He drags several tacklers and is finally
stopped halfway between the boundaries
on the 5-yd line located at the north end of
the field. With this information you can cal-
culate only one of the quantities: distance
or displacement. Which one can you calcu-
late? Calculate the one you can and ex-
plain why you cannot calculate the other.



B4.

BS5.

Bé6.

Three astronauts, labeled A, B, and C, are

oriented differently in Skylab, as illustrated

in Figure 1-B4. Their descriptions of the

location of the toolbox can differ because

of their different orientations. For any two

astronauts, write observations that differ

because of:

a. reference object chosen

b. reference directions chosen

c. both reference object and reference di-
rections chosen

A friend gives you these instructions: To
get to my house from the bank, go two
blocks north, then three blocks east and
two blocks south. What distance, in blocks,
do you travel to get to your friend’s house?
What is your displacement? (If you have
trouble, draw a picture of the route.)
Describe the location of the five dots in Fig-
ure 1-B6.
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B7.

B8.

B9.

B10.

Problems and Questions 19

Figure 1-B7 shows two different models of
the universe that sparked an intense con-
troversy between science and religion dur-
ing the time of Galileo. Use the concept of
reference frame to describe how the two
models are different.

What are the distances moved for each set
of starting and ending coordinates listed
below?

a. Om, 10 m) to (O m, 5 m)

b. (2 m, 15 m)to (2 m, 60 m)

c. 3m,5m)to{l m,5m)

d. (20 m, 15 m) to {15 m, 15 m)

How many dimensions are required of a
coordinate system’used in each of the fol-
lowing situations?

a. highway mileage signs

b. crossword puzzle

c. football field

d. location of airplane in flight

The distance between New York and Lon-
don is 5500 km. What are the distance and
displacement of the Concorde supersonic
airplane when it completes a New York-
London round trip?



20 Chapter 1. Position and Change

C. Extensions to New Situations

C1l. Read the cartoon in Figure 1-7. Draw a
picture of Zero’s coordinate system. Show
the location of the origin and orientation of
the coordinate axes.

C2. One design for space stations is a large
ring as sketched in Figure 1-C2. As the
ring rotates, artificial gravity is created, al-
lowing people to walk on the outer edges
of the space station. How do each of the
people in the diagram define the direction
down?

C3. From Through the Looking Glass:

And they went so fast that at last
they seemed to skim through the air,
hardly touching the ground, till suddenly,
just as Alice was getting quite exhausted
they stopped . . . .

Alice looked round her in great sur-
prise. “Why, [ do believe we've been under
this tree the whole time! Everything’s just
as it was!”

“Of course it is,” said the Queen . . ..
“Now, here, you see, it takes all the run-
ning you can do to keep in the same
place. . ..”

a. What reference object is Alice using to
describe her motion?

b. What is her position relative to this ob-
ject at the beginning and at the end of
her run?

c. How far did she move relative to her
reference object?

d. Can you explain Alice’s lack of change
of position? (Remember, this story is a
fantasy, so anything is possible.)

C4. A construction very similar to a two-dimen-
sional coordinate system combines one di-
mension in space with time. For example,
in describing our location while traveling
we could say, “] will leave Springfield now.
In 30 minutes [ will be 50 kilometers away;
in 60 minutes, 100 kilometers away; and in
90 minutes, 150 kilometers away.”

a. Draw a (space, time) system with O km,
0 minutes (min) as the origin.

b. Locate the given (space, time) coordi-
nates on the system drawn in {a).

c. By looking at the information on this
coordinate system can you predict the
distance away from Springfield at 120
minutes?

C5. Draw a coordinate system in which a dot’s
location is (0 m, 10 m). Draw a second co-
ordinate system with the same scale in
which the same dot’s location is {0 m, 20 m).
What is different about the two coordinate
systems?

C6. Look at the map shown in Figure 1-Cé.
Are there regions where rectangular co-
ordinate systems have been used? Regions
where there is no rectangular system? Can
you invent another type of coordinate sys-
tem to fit the maps?
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C7.

C8.

We can measure the length of a piece of

paper in two different reference frames. In

reference frame A, one corner of the pa-
per is located at 0.00 m and the other at

0.29 m. In reference frame B, the first cor-

ner is located at 0.10 m and the second at

0.39 m.

a. What is the length of the paper in refer-
ence frame A?

b. What is the length of the paper in refer-
ence frame B?

c. Compare your answers in (a) and (b).
Does the length of an object depend on
the reference frame chosen?

d. How is length different from position?

Planets were first distinguished from stars

because they appeared to wander relative

to the constellations. Figure 1-C8 shows
the motion of Mars relative to the constel-
lations of Virgo, Libra, and Scorpius. As
measured from Earth, will the distance

Mars travels be different from its dis-

placement?
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C10.

In each of the situations below, will the dis-

tance and the magnitude of the displace-

ment of the object be the same or dif-

ferent?

a. A batter hits a fly ball to center field.

b. An apple falls from the tree.

¢. The moon orbits the earth.

d. A golfer tees off, sending the ball to the
green.

Use the examples to describe the circum-

stances under which the magnitude of

the displacement will equal the distance

moved.

In Self-Check 1C you calculated the dis-

tance and displacement for the two routes

Problems and Questions 21

shown in Figure 1-10. Use vector addition
to measure several other routes. Convince
yourself that the two routes in Figure 1-10
are the minimum and maximum displace-
ments possible. Any other choice of direc-
tion for the 2-km displacement leads to a
net displacement between 1 km, east, and
5 km, east.

D. Activities

D1.

D2.

D3.

Select one building on your campus. De-

scribe the coordinate system used to locate

that building on a campus map. What ref-
erence objects are needed?

Obtain a globe or map of the earth.

a. What coordinate system is used to lo-
cate positions on the earth’s surface?

b. How many dimensions does the system
have?

c. Where is its origin?

d. What are the locations of Sydney, Aus-
tralia; Moscow, USSR; the South Pole;
and your present position?

Visual illusions such as that shown in Fig-

ure 1-D3 are often created because a ref-

erence object is used to trick our eyes.

Consult a book dealing with illusions, such

as R. L. Gregory, The Intelligent Eye

{(McGraw-Hill, 1970) and describe how a

reference object was used to help create

the illusion.
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D4.

List common situations in which:

a. Distance would be more useful than
displacement.

b. Displacement would be more useful
than distance.





