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We investigate the interplay between mathematics and physics resources in intermediate mechanics students.
In the mechanics course, the selection and application of coordinate systems is a consistent thread. At the
University of Maine, students often start the course with a strong preference to use Cartesian coordinates, in
accordance with their prior physics and mathematics classes. In small-group interviews and in homework help
sessions, we ask students to define a coordinate system and set up the equations of motion for a simple
pendulum for which polar coordinates are more appropriate. We analyze video data from several encounters
using a combination of Process/Object theory and Resource Theory. We find that students sometimes persist in
using an inappropriate Cartesian system. Furthermore, students often derive (rather than recall) the details of
the polar coordinate system, indicating that their knowledge is far from solid. To describe our work more
precisely, we define a scale of plasticity and several heuristics for defining resources and their plasticity.
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I. INTRODUCTION

As part of ongoing research into cognitive processes and
student thought, we investigate the interplay between math-
ematics and physics resources in intermediate mechanics stu-
dents. We collect data from student interactions to build
models of student cognition, which are then used to inform
curriculum development.

In this paper, we consider the question of how new ideas
develop in students. We are particularly interested in the de-
velopment of mathematical ideas within physics—in this
case, the use of coordinate systems to describe a physical
situation. In Sec. II, we review our theoretical framework,
review how others within this tradition have dealt with the
construction of new ideas, and introduce heuristics for rec-
ognizing resources and their plasticity. In Sec. III, we de-
scribe our research setting. Section IV forms the bulk of the
paper, with an extended description of two students defining
the coordinate systems used to describe a simple pendulum.
The paper concludes with a brief discussion.

II. THEORETICAL DEVELOPMENT

We use theoretical perspectives from both mathematics
education research (Process/Object!) and physics education
research (Resource Theory?).? In this section, we present an
overview of Resource Theory and its connections to Process/
Object as extended by the recognize/build-with/construct
(RBC) model for abstraction.*””7 We introduce the idea of
plasticity, a continuum which extends Resource Theory to
describe the development of resources. We then present heu-
ristics for identifying resources and their plasticity in situ.

A. Resource Theory

Resource Theory is a constructivist schema theory which
bridges neurocognitive models of the brain and results from
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education research®® to describe the phenomenology of
problem solving.!” Resources are small reusable pieces of
thought that make up concepts and arguments. In contrast to
Process/Object’s historical focus on conceptions of math-
ematical entities, research using Resource Theory has tradi-
tionally focused on the connections between different ideas
in physics.

Because of Resource Theory’s genesis in the knowledge-
in-pieces tradition, most examples of resources in the litera-
ture primarily focus on primitives.'” Some examples include
“effect dies away,” which describes the motion of a box slid-
ing on a floor, the ringing of a struck bell, a person’s moti-
vation, and other phenomena. A mathematical equivalent ex-
ists in symbolic forms.!"!> Though most described resources
are primitive and thought of as having no internal structure,
in this paper, we describe a larger resource, coordinate sys-
tems, with much internal structure.

As originally published,”> resources were intentionally
vaguely defined. Later papers elaborate on the theory and
make more explicit connections between resources and other
theories.®%13-19 As Resource Theory has developed, different
aspects of student cognition have been explored using Re-
sources, including epistemology,'>!%2021 metacognition,'’
and the relationship between physics and mathematics con-
tent knowledge.!”?> Representations of linked resources have
been described'® and made consistent with the model of co-
ordination classes.?* These explorations have, in turn, en-
riched and made explicit some of the details of the original
skeletal framework, rendering it more like a full-bodied
theory.

As a theory, resources have been used in conjunction with
epistemic games and frames,* students’ sense of physical
mechanism,” and student reasoning in nearly novel
situations.'® It has been used to support curriculum develop-
ment in areas of introductory algebra-based physics,?® intui-
tive quantum physics,”’ and intermediate classical
mechanics.?®?° Based on the literature and our own work, we
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summarize that individual resources and groups of resources
have the properties listed below.

1. Individual reusable thoughts

Resources are small reusable pieces of thought that make
up concepts and arguments.” To be considered a resource, an
idea must have sufficient duration and stability to be reused.
Resources are individually nameable, such as coordinate sys-
tems or knowledge from authority."> Note that in this paper,
we will italicize the name of resources. Researchers name
resources; students need not be aware of the resources used
or their names.

Individual students hold resources; they are not socially
negotiated (unlike social norms).® Different people may
each hold a version of a given resource, and the construction
and details of use may differ among people.

2. Two states

Resources have two states: active and inactive. An active
resource is being used; an inactive one is dormant. This two-
state system harkens to neurology, in which neurons have
two states.!

The physical context and cognitive state of the user deter-
mine which resources are available to be activated. The ac-
tivation of resources occurs when their invocation, express or
implicit, is used to support or form an argument.

Asking a child at the park “Where’s the ball?” may acti-
vate resources for an activity (looking) as well as resources
for balls as objects that are round and bouncy. The same
question posed at bedtime may activate resources for the
story time activity as well as princess or dancing resources.
The choice of activated resources depends on the child’s
framing of the activity in which she is engaged.'*?*32

3. Connection and activation

In the ball question, multiple resources activate. These
activations are not unconnected. Resources link with each
other. These connections are commonly conceptualized as
ball-and-stick style graphs.'® Each resource is a node in the
graph, and each connection is a directional link.** This net-
work model is consistent with a model of coordination
classes.?

As an example, consider the motion of a tossed coin.
Figure 1 shows a possible resource graph. In considering this
question, you probably activated a velocity resource. Activat-
ing velocity may have activated actuating agency and then
forces as you consider why the coin moves. The motion dies
away as the coin nears the top and slows down. Of course, to
think about the coin in this manner, you have already acti-
vated object (instead of money), and you are probably using
part-for-whole to think about the center of mass motion
while ignoring spinning or flipping.

Just as neuronal links may be excitatory or inhibitory,
links between resources may promote or demote activation.’
If the network tends to have the same structure repeatedly,
then it is “stable.” If not, then it has been built “on the ﬂy.”2
Stable networks consist of resources that are cognitively
“nearby” each other: they tend to activate together.33*
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FIG. 1. Resource graph for the motion of a tossed coin. Only
activated resources are shown.

4. Internal structure

In the ball question, one resource that could activate is
princess. Princess is not a primitive idea; it has constituent
ideas for what princesses are, their roles in fairytales, appro-
priate princess dress, etc. As a resource, princess illustrates
that resources are nestable;>3 they may have internal linked
structure made up of other resources. In the resource graph
for the tossed coin (Fig. 1) forces is certainly not primitive,
but it links to other resources (like actuating agency) which
are more so.

Many concepts described in the literature (such as force)
have a complicated internal structure that is explorable but
perhaps not explored by the user when used as a resource. In
contrast, many primitives (such as diSessa’s phenomenologi-
cal primitives,'” known as “p-prims”) may have internal
structure that is no longer explorable. A large body of litera-
ture has identified both concepts’®® and some kinds of
primitives.'® Not all resources with internal structure are
concepts. We describe both resources with and without inter-
nal structure in this paper.

B. Development of resources

Several problems exist with the summary given above.
Foremost for the topic of this paper, there is no agreement on
a developmental path for the creation of new resources. A
primitive might develop early in childhood: actuating agency
is learned early by infants, and useful throughout life, for
example. Other, less primitive resources develop much later
in life. Refined physics ideas, readily available to an expert
and applicable in a variety of settings (be it tricks of integra-
tion, knowledge of subatomic particles, or ad hoc rules about
lattice structure), are obviously not learned in childhood.
Several suggestions have been made for how new resources
come to be. We consider four here: cueing and reliability
priorities of p-prims, development of symbolic forms as
p-prims in mathematical systems, reorganization of resource
graphs, and framing within a resource perspective.

1. Cuing and reliability priorities of p-prims

Typically, we use a simplistic description of p-prim acti-
vation to describe what happens when a user reasons, for

020105-2



PLASTICITY OF INTERMEDIATE MECHANICS...

example, about the physical actions of a moving object in-
teracting with its surroundings. This process of activation is
often simply thought of as a “recognition” that the particular
primitive is relevant and useful at that moment. In diSessa’s
seminal work'® on p-prims, he describes two ways in which
recognition plays a role, cuing priority and reliability prior-
ity. These help define how recognition occurs and depend on
the details of a scenario being analyzed.

Cuing priority describes how likely a p-prim is to be ac-
tivated in a given situation. A low cuing priority means that a
p-prim is highly unlikely to be activated in a given setting.
For example, the coin toss problem activates objectlike ideas
about center of mass rather than moneylike ideas about
value. In another example, setting determines if asking about
a ball activates ideas about a princess or a park. Cuing pri-
ority is thus a context dependent measure that describes the
likelihood of an original activation.

Reliability priority describes how likely a p-prim is to
remain activated once activated in a given setting. If the
reliability priority is high, then other connected p-prims are
likely to be activated as well. If the reliability priority is low,
then even strongly connected p-prims are unlikely to be ac-
tivated in that setting because the p-prim which could have
led to their activation quickly deactivates in that setting.

By considering ways in which cuing and reliability priori-
ties change, one can describe how p-prims adapt over time to
become associated with new settings (or other p-prims) more
consistently (both in activation and length of activation).
However, this model assumes that the p-prims themselves
are not changing, even though some of their properties may
be; the basic idea of a p-prim (such as “dying away”) does
not change even as it is associated with new settings and
other primitives.

In this paper, we implicitly use cuing and reliability pri-
orities as we expand on the ways in which the properties of
resources indicate whether they are easily available for use in
a given setting. We introduce several measures (described in
Sec. V) to account for different types of change that might
occur in resources. Many of these extensions depend on the
fact that resources are not necessarily primitive and may
have considerable substructure.

2. Forms as primitives in a symbolic context

In his Ph.D. dissertation,’® Sherin stated that new re-
sources “develop, in part, out of existing resources” and
“once the new resources have developed, connections may
remain between the new resources and the previously exist-
ing resources” (p. 152). Specifically, he argued that one kind
of resource, a symbolic form, develops through the connec-
tion of p-prims to the abstraction of symbolic experience.
Much as p-prims such as actuating agency arise out of ev-
eryday experiences in the physical world, a primitive sense
of base plus change arises from one’s manipulation of num-
bers and symbols beginning early in one’s use of mathemat-
ics. Importantly, Sherin!!-3¢ described the reinforcement that
occurs when certain forms are used frequently and the asso-
ciated p-prims are activated. In such a situation, the resource
becomes more and more powerful in one’s reasoning.
Sherin’s description!!* is consistent with diSessa’s cuing
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priority'® but is applied to the development of new ideas,
namely, symbolic forms.

We make two amendments to Sherin’s work!!3 in this
paper. First, we consider resources at a different level than
Sherin!!3¢ did. Where Sherin'!3¢ talked about a rather large-
scale cognitive resource of intuitive physics or algebra phys-
ics, we speak of resources in a way more closely aligned
with Hammer’s description of “fine-grained” reasoning ele-
ments or Minstrell’s view3” of “lightly abstracted” versions
of what students say. Second, and most importantly, we give
additional detail on the ways in which connections between
resources and between resources and settings indicate a flu-
idity in understanding.

3. Changes in mesoscopic resource graphs

Because resources are nestable, resources might be made
up of graphs containing other resources and these graphs
may link to resources of different sizes. One form of devel-
opment of a resource might be the reorganization of a re-
source graph into a new (and stable) graph. Such a descrip-
tion is consistent with changes in cuing priority. Also, one
can think of resource graphs as containing only resources
with a high reliability in a given setting (and are therefore
reliably linked with other resources).

In a previous work, one author (Wittmann'®) described
linked graphs of resources and the ways in which changes to
these graphs might be used to describe several forms of con-
ceptual change. Two processes of conceptual change origi-
nally defined by Demastes®® were described in terms of re-
source graphs. In an incremental change, one resource in a
graph changes while the others stay the same. Several con-
secutive but independent incremental changes are possible.
In a cascade change, the series of incremental changes is not
independent, but each depends on one (or more) of the pre-
vious changes. In another process, a large resource graph
might split in two as ideas are differentiated. In a state where
dual constructions are available to the user, different resource
graphs are available at the same time, activated differently
depending on a nuanced reading of the context.

We did not originally intend to use resource graphs to
define the creation of new resources. Instead, the assumption
was that the resources that form resource graphs are solidly
understood and easily available to the user. We reconsider
our original perspective in this paper.

4. Framing and frames

Another perspective exists when considering how sets of
resources are applied in a given setting. For example, during
a physics laboratory, a student may use one set of resources
for manipulating the equipment and another for coordinating
her groupmates. In the former frame, she uses resources for
uncertainty calculations and repeatable measures, while in
the latter frame she uses resources for allocation of labor and
gossip management.

Hammer et al.'* and Tuminaro'” described such a process
of recognizing which resources to use within a setting as
“framing,” building primarily on Tannen and Wallat,3>%
frames deal with “structures of expectation:”3? the way par-
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ticipants in a situation figure out “what’s going on here?” In
a resources perspective, such a question is answered by de-
fining which resources are activated in that setting. Framing,
then, is the active bringing together of one or several re-
sources in an effort to understand and work within a situa-
tion.

Framing may be able to show the development of re-
sources, though this development is not detailed in the litera-
ture connecting framing to Resource Theory.'* Because
framing is meant to bring together locally coherent sets of
resources, a frame might function like a protoresource (in
that a quickly built resource graph has the possibility of be-
ing reified into a single resource). Over time and with rein-
forcement, the protoresource may compile to produce an ac-
tual resource, ready to be activated as is. Consider, for
example, a physics student learning to apply the wave equa-
tion. This student might have to deliberately choose to use
separation of variables when solving a second-order differ-
ential equation because the method is not readily recruited
into her wave behavior frame. Over time, using separable to
describe equations becomes commonplace; the frame readily
recruits it. In other words, framing a problem as “a wave
problem” requires use of separable. This assumption of re-
source development as the development of regularly appli-
cable frames depends heavily on the description of resources
with internal structure and frames as reified acts of framing
which come to be resources in and of themselves.

While recognizing that framing is a valuable way to ad-
dress how students come to terms with unfamiliar situations
and contexts, we have chosen a different type of analysis.
Framing is typically described as an activity which recruits
existing resources to address problems or specific contexts.
We, instead, consider the development of the resources
alone. We track resources over time, looking at how inter-
resource and intraresource links develop in strength and
availability. We believe that our description of resource de-
velopment (as described in Sec. V) and framing are most
likely complementary, but it is presently unclear how to con-
nect them formally.*°

5. Plasticity

The plasticity continuum®*!' is an extension to Resources

which describes the generation and development of re-
sources. The two directions in the continuum are more solid
and more plastic. (We think of “more plastic” things as if
they are a soft gel and not yet hardened.) A solid (explorable)
resource can be considered a durable concept; its connections
to other resources are plentiful, and its internal structure is
unlikely to change under typical use.** Plastic resources, in
contrast, are less durable in time or less stable in structure;
they are not the reified objects that more solid resources are.
The more plastic a resource is, the less likely the user is able
to apply it to new situations and the more explanation is
needed to justify and explain its use. The more solid a re-
source is, the more likely the user is to refer to the resource
in diverse contexts without explaining its internal structure.
As with all resources, the plasticity of a resource is indepen-
dent of its veracity.

PHYS. REV. ST PHYS. EDUC. RES. 4, 020105 (2008)

We use the RBC model*” to inform and improve the
plasticity continuum, noting that the RBC model was origi-
nally intended to describe the reification and abstraction of
concepts and not all resources need be thought of as con-
cepts. The RBC model proposes three epistemic actions
through which abstraction occurs and which may be inferred
from observable behavior. These three actions—recognizing,
building-with, and constructing—are dynamically nested.

Recognizing, the simplest action of the three, occurs when
a student realizes that a “familiar mathematical notion, pro-
cess, or idea is inherent in a given mathematical situation.”™
These recognized cognitive objects are akin to resources (or
other similar constructs). Recognition is thus synonymous
with activation of resources. The specifics of which re-
sources are recognized give insight into students’ thought
structure and may depend on a student’s framing of a situa-
tion. Ease of recognition is therefore a marker of solidity.

Once a familiar idea has been recognized, a student may
build-with that idea to solve a local goal, such as solving a
problem or justifying a statement. Several resources may
need to be recognized and built-with at once. Under Re-
source Theory, activated resources form a web or graph that
may be built on the fly. Such resources require relatively
high reliability priority in order to exist long enough to allow
for graph building. Because building-with and recognizing
are two separate actions, the RBC model allows us to de-
scribe behavior when students mention an idea but do not
appear to know what to do with it. In diSessa’s
formulation,'® a resource with high cuing priority and high
reliability priority might simply not be strongly connected to
many other resources in that given context. Such a resource
is recognized but not yet available for a building-with action.

In contrast to building with, constructing has purpose and
duration beyond solving a local goal. Constructing creates a
less-local, more abstract entity. As a construction becomes
more durable, it becomes more consolidated and is no longer
necessarily built on the fly. The new-formed resource may be
quite plastic, but as further constructions are added to it and
as it compiles further, it can become more solid. It becomes
a resource in its own right and therefore can be recognized or
built-with in later local goals. Thus, constructing is a mecha-
nism for increasing the solidity of specific resources. This
language is similar to that of framing. However, it includes
an element of abstraction across contexts which is distinct
from a context-specific frame-based approach. This abstrac-
tion may lead to a more general and reliably activated frame
in a given context. Extremely solid resources—rigid
resources—have been so tightly compiled that their internal
structure is not readily accessible to the user.

The plasticity continuum thus speaks to resources’ stabil-
ity of structure, their durability in time, and their connected-
ness to other resources. In many cases, these dimensions tend
to follow each other, and plasticity can be a useful indicator.
Should these properties diverge, they must be specified indi-
vidually. In cases like that, plasticity is too coarse a tool for
analysis. In Secs. III-V, we introduce heuristics for identify-
ing resources and their plasticity, then apply them to a case
from intermediate mechanics further detail the theory.
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C. Heuristics

Having presented both a summary of Resource Theory
and several ideas for how new resources might develop over
time, we now suggest a collection of heuristics for identify-
ing resources in situ. Our heuristics differ from those pre-
sented by diSessa'® for identifying p-prims because re-
sources and p-prims bear enough differences that a different
list of heuristics is desirable. A short list of heuristics for
resources and their plasticity follows. These formalize and
summarize points made previously in the paper.

The following heuristics describe how one can find “clas-
sical” resources: resources that are generally solid.

R1. Resources are reusable. For an idea to be considered
a resource, it must have sufficient duration to be reused. Thus
one appearance of an idea is suggestive, but insufficient, to
term that idea a resource.*3

R2. Resources may be referred to without exploring inter-
nal structure. It may be that the internal structure is unavail-
able, such as the case of primitives, or it may be that it is
simply not currently explored by the user, as in the case of
some concepts. In either case, the referring need not be ex-
plicit: resources may activate without being explicitly called.

R3. Resources are nameable by researchers. A resource is
a discrete bit of thought. While it can be alluring at times to
refer to “resources relating to a coin toss,” for example, un-
specific language of this nature does not identify the specific
resources in question. This amount of detail is not always
desirable, but it is possible in principle. Note that users need
not name—or even be explicitly aware of—all the resources
that they use.

R4. Resources activate. If a resource is not apparent in a
given situation, that failure is not necessarily indicative that
the resource does not exist, merely that it did not activate.
One (or more) of the following conditions may be preventing
its activation: another resource may be blocking it; the con-
text may not be linked to it; or it may not exist. To prove a
lack is difficult. Only over many situations, in varied con-
texts, is it safe to say that a resource which has never acti-
vated does not exist.**

More plastic resources present more difficulty, especially
in items R1 and R2. Using the RBC model, we can extend
R1-R4 to find evidence of resources’ plasticity. We propose
the following heuristics for defining the plasticity of re-
sources. Examples for many are given elsewhere*' and in
this paper:

P1. Ease of use. The more solid a resource is, the more
easily it can be recognized or built-with. This ease of use is
directly related to the number and strength of connections
that a resource has. Well-connected resources are more likely
to activate in a variety of situations.

P2. Recency of construction. Often, but not always, the
more recently a resource was constructed, the more plastic it
will be. Counter examples include infrequently used re-
sources, which may be old but plastic (like a physics profes-
sor’s criterion for critically damped harmonic motion), or
recently constructed ‘“flashbulb” resources, which are so
vivid that, despite their newness, they are etched solidly
upon the mind. (Flashbulb resources are like flashbulb
memories.*)
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P3. Elaboration needed to evaluate. Users need to explic-
itly test plastic resources against other (often more solid)
resources to determine if the plastic ones should be used in a
given context. These tests often take the form of elaborative
sense making. In contrast, solid resources can be appre-
hended whole and are often quickly recognized without
elaboration.

P4. Justification. Because plastic resources often are
tested against solid ones, solid resources can justify the use
of plastic ones. The degree to which a resource justifies an-
other can be used to see how nearby'¢ the two resources are
and to see their relative solidity.

PS. Rejustification or rederivation needed for extended
use. In a long episode, as resources fall out of working
memory, very plastic resources may need to be rebuilt or
rejustified. In contrast, more solid resources can be rerecog-
nized quickly.

These heuristics extend the ideas described in Sec. II B.
They describe elements of observables within the measure of
plasticity while also combining these variables into a single
measure. In Secs. III and V, we present data from an inter-
mediate mechanics class to support a plasticity-based analy-
sis of student reasoning.

II1. RESEARCH SETTING

Intermediate mechanics is a particularly rich place to
study the interplay between physics and mathematics ideas,
as students often enter with a solid intuitive grasp of the
physics (which may be incorrect), but have not yet applied
sophisticated mathematics. At the University of Maine, inter-
mediate mechanics is a one-semester physics course which
meets for three 1 h periods each week. Generally, one of
those periods is devoted to small-group work on research-
based guided-inquiry tutorials.*® The other two are lecture
based. In the work described in this paper, the course gener-
ally followed a textbook*” with a typical intermediate me-
chanics schedule, starting with air resistance and continuing
to damped and driven harmonic motion, energy consider-
ations, Lagrangians, and rotational motion. Typically, about
half of the students are concurrently enrolled in differential
equations; the other half have already taken it.

One thread that runs through the entire course is the se-
lection and application of appropriate coordinate systems.
Upon starting the course, many students have a strong pref-
erence to use a Cartesian coordinate system where the posi-
tive directions are up and to the right. However, many prob-
lems in physics can be made simpler through using other
coordinate systems. For example, finding the position of a
pendulum as a function of time is simplest using polar coor-
dinates. As these students develop as physicists, choosing
appropriate coordinates for a problem becomes more impor-
tant.

A. Problem involving coordinate systems

To investigate students’ developing understanding of co-
ordinate systems, as well as other questions, we collect video
data from a variety of sources, including informal group help
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FIG. 2. The forces on a simple pendulum, with a physicist’s
polar coordinate system shown.

sessions, weekly small-group short interviews, and class dis-
cussion. We also collect written data in the form of ungraded
(postlecture, pretutorial) pretests, homework assignments,
and exams. In this paper, we focus on video data from one
pair of students during short group interviews in weeks 4 and
10 during the Spring 2006 semester. As part of a larger study,
in which a majority of the class was interviewed in small
groups on a weekly basis, we pick out this pair because of
the amount of time they spent discussing the choice of coor-
dinate systems for the simple pendulum.

The two students, “Derek” and “Wes,” volunteered to be
interviewed together. Derek was a conscientious student who
submitted thorough solutions to assigned problems. He
started the semester averse to small-group tutorial work and
finished a loyal supporter. In contrast, Wes rarely submitted
complete solutions and had a poor work ethic. At times, he
appears to enjoy being ornery. They were good friends and
enjoyed mutually abusive banter. The playful tone of their
interactions is not always evident in transcript.

In both interviews, students are presented with the same
problem: given a (drawing of a) simple pendulum (Fig. 2,
with polar coordinates shown in a way students did not see),
find the position of the pendulum bob as a function of time.
So that students do not spend time figuring out the forces on
the bob, and to predispose the students into thinking of force-
based solutions, the forces on the bob (a weight force and a
tension force) are given diagrammatically. So as not to pre-
dispose students into choosing a particular coordinate sys-
tem, the forces are not described as being “vertically down-
ward” (weight force) or “radially inward” (tension force).

To solve for the position of the bob as a function of time,
a physicist might first write Newton’s second law for the
system, a vector second-order differential equation. The
physicist would then choose a polar coordinate system as
shown in Fig. 2. This coordinate system takes advantage of
the natural geometry and symmetry of the situation, and it is
a calculationally easy choice. With the coordinate system in
place, the vector equation of motion can be split into two
scalar differential equations and then solved. As the focus of
the interviews was on the coordinate system choice, the stu-
dents were not expected to solve the differential equations.

We note that students in the intermediate mechanics class
have encountered the pendulum problem in some detail in a
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calculus-based introductory physics course. The pendulum is
but one (relatively simple) example of harmonic motion, one
of the most important models taught in an undergraduate
physics major. We expected students to be familiar with the
problem but to have forgotten the specifics of the modeling
they previously did.

B. Resource structure of coordinate systems

Graphs can be used to represent multiple resources acti-
vated together.'® Just as resources can be grouped into
graphs, an individual resource can also be made up of sub-
graphs containing other resources. The scale of such nested
resources is often not clear. As researchers, therefore, we
choose a level of specificity to examine, noting that other
levels are possible and may yield interesting results. We de-
signed the research task to match our investigation of the
structure and development of resources.

We break the coordinate system resource into three sub-
graphs of resources nested within it: property resources,
which describe general properties that coordinate systems
bear; use resources, which describe when to use coordinate
systems and which coordinate systems to use; and case re-
sources, which hold the specifics of given coordinate sys-
tems. An example of resources in each subgraph is available
in Table I. The exact breakdown of which resources belong
in which subgraphs, as well as the intersubgraph and intra-
subgraph connection details, are user specific and time spe-
cific. However, naming one possible set of components and
their interplay gives a baseline against which users’ ideas can
be tested.

Using our breakdown of subgraphs within coordinate sys-
tems, it is possible to examine which resources activate in
given situations and show intra-coordinate systems linkages.
It is unreasonable to expect that all of these resources would
activate in every episode; typically, only a few need be ac-
tive, depending on the context.

To explore these resources, consider a ball rolling down a
hill. One possible coordinate system is aligned parallel to the
hill, positive downward and zero at the top of the hill. In
choosing this coordinate system, you activated directionality
to set the positive direction and value to set the zero at the
top of the hill. You also—likely implicitly—chose to use one
coordinate via numberline because only one coordinate is
needed to span the ball’s likely motion.

Of course, this coordinate system is explicit, but it is not
inherent in the motion of the ball: we chose it. Another pos-
sible coordinate system is to have the positive direction be
vertically upward, with zero at the bottom of the hill. The
choice to use one or the other of these systems is somewhat
arbitrary considering that the same information can be
gleaned from either; they are equivalent. However, depend-
ing on the question at hand, it may be more calculationally
easy to prefer the vertical coordinate (if we were using en-
ergy conservation, for example) or the parallel one (if we
were finding the time to reach bottom, for example). Calcu-
lational ease, like so many other resources, might contain a
complicated internal structure. However, we note that it can
be treated as a resource both in the Minstrell’’ sense of
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TABLE I. Subgraphs in coordinate systems. Ea
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ch resource is described based on its application within

coordinate systems. Noncoordinate system applications have more general descriptions.

Properties Directionality Positive and negative, forward and backward
Each coordinate cannot be obtained through linear
combination of other coordinates in the same
Orthogonality system. Related to independent.

A set of all coordinates expresses all possible
Span dimensions of the space.
Equivalency Different coordinate systems are interchangeable
value quantities that can be measured and labeled.

Use Choice Coordinate systems must be chosen

Explicitness Use may be implicit or explicit

Natural “Preferred” coordinate system based on geometry
Preferred coordinate system based on calculational

Ease ease

Arbitrariness Choice of coordinate system is not predetermined
Within a problem, coordinate systems should not

Consistency change

Case Cartesian A rectilinear coordinate system (x, y, z)

A circular coordinate system in two dimensions (r,
Polar 0)

A circular coordinate system in three dimensions
Spherical (r, 6, &)
Numberline A one-dimensional coordinate system

Used to visually answer the question “Where
Diagrammatic is...7””
Spaces Phase space, vector space, state space, etc.?

Often Cartesian representation of one or more
Graphs nonpositional variables

#Note that while these coordinates are not necessari
is locationlike.

“lightly abstracted” versions of what students say (as shown
below) and in the sense that one can activate ease instead of
choosing to make things hard for oneself. We often see stu-
dents failing to invoke ease in their problem solving. In this
paper, we use ease as a shorthand to refer only to calcula-
tional ease, noting that calculational ease may be only a
subset of all things easy.

In this paper, we focus on only a few examples of re-
sources which are closely tied to the pendulum problem. The
case resources commonly activated in this problem are Car-
tesian and polar. These are often activated because they are
natural to the geometry or easy to use mathematically. Fi-
nally, the issue of span arises in determining whether the
chosen coordinate system can actually describe the entire
system (and the space in which movement occurs) appropri-
ately. Other resources are also commonly activated in this
problem, notably arbitrariness, equivalency, and orthogonal-
ity, but we do not discuss their contributions here.

IV. DATA

Though coordinate systems contains a large number of
other resources, not all of them are activated in the inter-

ly positions, the language used to describe their systems

views discussed here. In addition, a great many resources
unrelated to coordinate systems are activated. To help focus
the discussion, we restrict the analysis to looking at the ac-
tivation of and connections between five resources within
coordinate systems (polar, Cartesian, natural, ease, and
span) and the plasticity of only two resources (polar and
Cartesian) for each student. In the process, we draw resource
graphs of these five resources for each student.

A. Preliminary resource graphs and plasticity (week 4)

In the first interview (week 4), the interviewer presents
the problem. Wes and Derek immediately launch into a dis-
cussion of Newton’s second law, its applicability, and energy
considerations. After several minutes of discussion without
reference to a coordinate system, the TA asks, “What coor-
dinate system are you using?” (line 129). (These line num-
bers are consistent with the start of the interview and the full
interview transcript is given in the online appendix.) When
her question is met with silence, she continues, “Let’s make

29

one.
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FIG. 3. Two coordinate systems from Wes. At first, he draws the
x and y coordinates. In response to Derek’s polar suggestion, he
replaces y with r, labels the angle between r and x as 6, and erases
x.

1. Polar, Cartesian, and ease (week 4)

We first show the level of plasticity in polar resources of
Wes and Derek. After the TA question, the following conver-
sation occurred:

Wes:  (Points) He loves this. We may
140 not use it. (Draws Cartesian coordinates)
Jeezum crow, that’s an x.
Derek: Out of curiosity, why not use

polar?
Wes:  Eh?
Derek: Why not use polar? We’re dealing
145 with angles that are changing?

Wes:  We’re going to deal with 7, we’re
going to deal with this, L.
Derek: Right, that’s all constant, though.

In line 139, Wes draws a Cartesian coordinate system
where positive is up and to the right. When he grumblingly
redefines his system in response to Derek’s suggestion of
polar coordinates,*® he relabels the y axis as the r axis and
defines the angle between the x axis and r axis as 6 (Fig. 3).
It is notable that some elements of Wes’s polar system agree
with mathematical convention: the two coordinates are r and
0, and 0 is measured counterclockwise from the right hori-
zontal line. A conventional physical choice for this problem
measures @ counterclockwise from the downward vertical
line, a quarter-circle phase difference. Both choices are valid.
That Wes chooses mathematics convention, not physics con-
vention, is not surprising given that his primary experience
with polar coordinates has been in mathematics classes, not
physics classes, even though he has most likely solved this
problem in polar coordinates in his previous year’s introduc-
tory physics class. It is also quite possible that he simply
used the existing coordinates and redefined them but found
no conflict between his redefinition into polar coordinates
and the familiar mathematical language.

In this interaction, Wes chooses Cartesian because it is a
natural choice. Derek argues that polar is more calculation-
ally easy because only the angles change not the radii. Be-
cause only one coordinate is changing (a statement of span),
the system can be reduced to a numberline-like problem. By
heuristic R3, we observe that the two are activating different
resources at this point. Each resource most likely has consid-
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FIG. 4. Derek and Wes use four definitions of @ at different
points in the two miniviews. Contrast their choices with the physi-
cist choice presented in Fig. 2.

erable internal structure, which seems not to be relevant to
either Wes or Derek. Instead, they justify their actions based
on natural and ease, respectively, and move on.

It is notable that neither Wes nor Derek feel a need to
explicitly define their zeros for either coordinate and consider
the coordinate system discussion closed at this point: Wes
immediately moves on to ask the TA if they are looking for
the position as a function of time.

To return the discussion to coordinate systems, the TA
asks Wes and Derek to apply their coordinate system, which
is drawn next to the sketch of the pendulum (as in Fig. 3), to
the sketch itself:

TA: Tell me more about this coordinate
system you, you set up here.
185 Wes:  Just polar.

TA: Kay....What direction is the—

Wes:  Positive.

TA: In this picture? Yeah, which way is it.

Wes:  This is positive theta.
Counterclockwise.

190 TA: Which way is this, r.

Wes:  ris (gestures to the pendulum string
on the diagram). If—what?

Derek: It really doesn’t make a difference
how you define it.

The speed of Wes’s response, coupled with its brevity,
indicates that he is using polar whole, without extensively
deriving directions and zeros for the two coordinates. Wes is
working at the level of choosing among prebuilt coordinate
systems rather than constructing a coordinate system from
scratch. Wes labels the polar angle as measuring counter-
clockwise from horizontal to the position of the bob (@, in
Fig. 4). Just after this clip, both students continue, readily
volunteering that r should be measured outward from the
attachment point of the pendulum.

Derek’s statement at line 193 is an expression of arbi-
trariness: it does not matter which direction is positive. Be-
cause Wes’s definition of @ indicates a curved path, but unit
vectors are always drawn as straight lines, the TA presses
Wes to show the direction of @ at the instant shown, hoping
that he will choose a direction tangent to the path. Wes de-
murs, asserting again that @ is “counterclockwise.”

We interpret this interchange about defining the system as
showing Derek and Wes using different coordinate systems:
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polar (because it is easy) for Derek and Cartesian (because it
is natural) for Wes. Furthermore, polar coordinates are con-
nected to physical examples for Derek. They are less con-
nected for Wes, for whom Cartesian coordinates are “tradi-
tional” (line 259) for any given problem and polar
coordinates are not well defined. This indicates differing lev-
els of plasticity: Cartesian coordinates are more solid for
Wes, polar coordinates more plastic, and polar coordinates
are more solid for Derek than they are for Wes. However, we
do not yet have evidence to compare the plasticity of Derek’s
polar resource to Wes’s Cartesian resource.

2. Position, time, and span (week 4)

After reciting positive directions for the TA, the students
feel that their coordinate system definition is sufficient again.
They quickly move on to solving the “real problem:” finding
the position as a function of time. They discuss the graph of
position vs time (“some sort of sinusoidal pattern” in line
230), whether mass is important, and whether they remember
the formula for period.

The TA brings them back to discussing their coordinate
system choices by asking them to draw their system on the
board. Wes petulantly interjects with “Does it even matter?,”
an expression of arbitrary. He seems to object to the TA’s
continued harping on the matter of a coordinate system when
he wants to move on to the “real problem.”

Note that after the coordinate system was first mentioned
and the pair decide on a polar system, Wes quickly moved to
asking about the position as a function of time.

165 Wes: That’s good. So you would want an
equation that is any position in terms
of time.

TA: Well...the position of the...yeah.

Wes: The position of this—

170 TA: In terms of time, yeah.

Wes: Now, do you want position in terms
of this way (gestures horizontally on the
diagram)? Or this...

Do you want like x,y position?
All, all I want to be able to do is tell
you where it is—

Derek:
175 TA:

Derek: It’s much easier to use angles.
TA: —at any time.
Wes: Yeah.

180 Derek: Hence, why it’s easier to

use angles.
Wes: To just know where it is. Totally.

Wes’s words and gestures indicate that he is still thinking
about Cartesian as the most natural system for this problem.
In contrast, Derek strongly holds that “angles”—a reference
to polar systems—are easier.

Wes returns to his question of position as a function of
time later in the miniview, starting with a petulant comment
about arbitrariness. Wes is still using Cartesian to describe
this system. In line 259, Wes says, “I would say if we had it
in the traditional x,y, I just don’t know where to go
from...the start point.”

Wes’s activation of Cartesian as the most natural system
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for any problem—a “traditional” or default system—is get-
ting in the way of solving for the position as a function of
time. The TA asks him to consider how to solve the problem
using polar coordinates. Wes responds that he would “just
break it down into [redacted], um, arc lengths, kinematics
equations with forces, and do some trig” (line 264). Derek
eggs him to do so, and Wes grabs the marker, narrating his
ideas. Some intervening lines have been omitted.

Wes: And work out all the math. Hey,

I don’t want to work out all the math.
(redacted) (grabs marker). Well, let’s say

270 this is L and say this is here, and this is
a triangle, and that’s a right angle, and
that’s some other distance I'm not going
to name, yet, cause I don’t feel like it.
But...this is our theta up here. The
sine theta...(writes). Yes, no?

Wes: Mmkay. And, uh, we say our starting

280 height (pause) is whatever distance,
L, minus this. That’s our starting dis-
placement from wherever it’s going to
be at the bottom. Then I'd use energy
and figure out what it’s speed would be
at the bottom. But...we’ll stay away

285 from energy, I guess. (Pause) *Cause my
mind’s trying to be connected to...we
want something to tell its position with
respect to time. (Pause: 15:00)
(continues).

During Wes’s extended argument, Derek is largely silent
and working privately on an unrelated problem. In analyzing
Wes’s argument, we break the argument into three segments,
the first two of which are shown in the clip above. In the first
part (lines 267-275), Wes labels lengths, heights, and angles
in the problem. In the omitted lines above (lines 276-278),
he seeks Derek’s social agreement on his naming scheme. In
the third part of Wes’s argument (lines 279-288), he moves
to trying to solve the problem using his preferred coordinate
system, possibly using conservation of energy.

Wes’s diversion into energy is not just fleeting whim here.
When the problem is presented to the pair again in week 10,
he brings up energy arguments again. Physicists find that
energy conservation (as opposed to vector force summation)
is an attractive solution method for many problems in phys-
ics. For a simple pendulum, energy is conserved as it swings
to and fro. Solving for the speed of the bob as a function of
position is therefore a trivial exercise. Using energy argu-
ments, a natural coordinate system is Cartesian; gravita-
tional potential energy, expressed as mgh, requires that one
coordinate be vertical and measured with positive up. Wes is
most likely thinking of these arguments when he defines his
“starting height” in line 279.

Energy conservation arguments are alluring, but energy
arguments cannot be employed to solve for the position as a
function of time. In the second part of Wes’s argument, he
mentions that he would like to use energy, but then he gets
stuck with that approach. Though he is not explicit, it may be
that some of his difficulty stems from the inapplicability of
energy arguments to this question of time. That is not the
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sole source of his difficulty with this problem, however, as
he goes on to describe in the third part of his argument,
included below.

Wes:  (15:00) (Continued) And if you
want position in x,y, then, it’s gonna
285 be...stupid to do. To try. It would be
easier to do position as opposed to
angle of displacement. (Hands marker to
Derek, who begins writing)

290 TA: Does uh—
Wes:  Rest point.
TA: Does a position based on angle and
how far you are away give you the same
information as it’s x,y coordinates.
295 Wes:  Well I can’t think of any way to put it

in terms of—you want what’s this point.
What are it’s coordinates at this point?
TA: “Where is it?” “Where is it?”
Wes:  But you’d have to do that in terms of

300 coordinates, right?
TA: Sure.
Wes:  Sure.
TA: That’s—
Wes:  And, uh...so I would say I don’t
305 know any functions that would give you
out two parameters.
TA: Mmkay.

Wes: At the same time. (Inaudible) I mean,
you could base it on y and say ok and
310 then plug it into a different equation and
get your x.
TA: Okay.
Wes:  (16:00) If you want a specific point,
I would almost want to take the route of
315 what’s it’s angle of displacement. But,
TA: Would displacement tell you exactly
where it was? At any time?
Wes:  Huh? Well, no, you’d have to figure
that out. But,

In this third part of Wes’s argument, Wes wonders if it
would be smarter to measure position based on displacement
from starting angle. The TA’s question in lines 292-294 is a
pointed question of equivalence and span. Wes does not ad-
dress the equivalence argument. Instead, he explains that he
“[does not] know any functions that would give you two
parameters” and thus he cannot solve the two-dimensional
problem using the “traditional x-y” coordinate system. He
seems to have activated span as a relevant measure of mod-
eling but seems unable to connect ease and span together to
point to his chosen coordinate system. The TA presses the
point in line 307, asking if angular displacement is sufficient.
Wes replies that he does not know and that he would “have
to figure that out,” further evidence that Wes’s polar resource
is not well connected to other resources. In particular, it
seems connected to neither natural nor easy. Furthermore, it
seems that while he has activated equivalence in order to
consider using an alternate system, he is unable to fully
switch to that system because it is neither natural nor easy.

When the equivalence question is put to Derek in lines
327-329, he replies quickly that knowing € as a function of
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FIG. 5. Resource graph of Wes and Derek from the week 4
miniview. Note the explicit lack of connection between ease of
calculation and Cartesian resources for Wes but not for Derek. Only
natural, ease, Cartesian, polar, and span are shown.

time is sufficient. The quickness of his reply and the matter-
of-fact tone in which he delivers it are evidence that polar is
more solid for Derek than it is for Wes. Derek’s quickness of
reply implies solidity here because it has a quickly activated
connection to polar. However, when Wes quickly activates
polar, without connections, it is recognized but plastic. This
difference shows that cuing reliability alone is insufficient
for determining plasticity; the other heuristics are necessary
as well.

In contrast to Wes, Derek sees the span of polar and Car-
tesian coordinates as sufficient for this problem and sees po-
lar coordinates as natural for this problem. We represent this
description of resource use by Wes and Derek in Fig. 5. Note
that one arrow is drawn to indicate the explicit lack of con-
nection between Wes’s ease and Cartesian resources.

3. Origin

Of particular interest in the discussion of Wes and Derek
on coordinate system choice is their choice of origin. To
examine the subtleties of their ideas, a brief interlude about
the nature of the origin is necessary.

In all locational coordinate systems, locations are ex-
pressed in reference to the values of the coordinates. In a
Cartesian system, the zeros of each coordinate (a statement
of value) converge at one point (the origin) and that point
can only be specified using all coordinates. Thus, origin is a
combination of value and consistent in a Cartesian system. In
a polar system, at the point where the radial coordinate is
zero (analogous to the origin in Cartesian coordinates), the
angular coordinate may take any value. In that respect, this
point is unique in polar coordinates, and Cartesian coordi-
nates do not have an analogous point that can be wholly
specified using only one coordinate. Asking where the origin
is—and meaning the place where all coordinates have a
value of zero—when using polar coordinates is not a fair
question.

Wes and Derek both activate origin resources, as evi-
denced by their discussion starting at line 183 when the TA
asks them to apply their coordinate system to the sketch of
the pendulum. Immediately following the 6 direction and
value discussion, they continue into a discussion of r, speci-
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fying both the location for zero and direction.

Later, to further explain his span argument and equiva-
lence confusion, Wes brings in a discussion of value. He
restates his argument to Derek, who had been working pri-
vately the first time, reiterating that to get a “precise exact
location in the x and y,” two equations are necessary, one for
each coordinate. Each position is thus expressible in terms of
the value of each coordinate. In polar, however, Wes has a
problem with expressing locations:

Wes:  But in polar, if you want it’s exact
location, in space, you have to have it in
reference to something.

Derek: The origin.

345 Wes:  So if you have it referenced to the
origin, you know that this length is going
to be constant, which is r in this system,
and so you could say it’s anywhere there
(in a circle of radius L).

Wes’s difficulty in expressing the “exact location” of the
bob may be related to the nature of the origin in polar coor-
dinate systems. It seems here that he does not view polar
coordinates as being a proper coordinate system, further evi-
dence of polar’s plasticity to him.

4. Summary of week 4 discussion

Derek and Wes are using different coordinate systems to
describe the physical situation. For Derek, polar is appropri-
ate because of the natural geometry and calculational ease.
Wes thinks of Cartesian coordinates as “traditional” and
natural and struggles with polar coordinates. We have de-
scribed some of these two students’ resources in terms of
resource graphs and on a plasticity continuum.

It could be argued that Wes does not have a polar re-
source at all; the components of a polar system are too
weakly connected to call polar a resource for him. Such an
argument belies Wes’s original work in determining the co-
ordinate system. In line 184, he refers to his coordinate sys-
tem as “just polar,” as if that is a sufficient response to the
TA’s request to tell her more about the system; earlier, he
quickly names and labels his coordinates (lines 159-160), r
and 6. By resource heuristic R2 (referable), polar is a re-
source. However, by plasticity heuristics P1 (ease of use), P3
(elaboration), and P5 (extended use) it is extremely plastic.

B. Revisiting polar coordinates (week 10)

In week 10, the task in Fig. 2 is posed to the students
again. In the intervening weeks, students have studied
damped and driven harmonic motion in class and have been
assigned a homework problem on the equation of motion for
the pendulum (derived using both Lagrangian and Newton-
ian methods). Their responses typify their approaches to the
class: Wes says that he “tried to use radians but got stuck and
gave up;” Derek says that to solve this problem, he would
just “assume a solution.”

When the TA asks them to define a coordinate system,
Derek chooses a polar coordinate system for the same rea-
sons he did in week 4. Wes once again chooses a Cartesian
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FIG. 6. Two plasticity charts for the week 4 miniview. Wes’s
graph is on top, Derek’s below. Wes’s polar resource is more plastic
than both his Cartesian one and Derek’s polar, but we do not have
enough evidence to learn how solid Derek’s polar is.

system. However, instead of choosing the standard system
where positive is up and to the right as he did in week 4, he
tailors his system to the problem at hand, defining positive
down and to the right. The downward direction is consistent
with the weight vector, showing a better match of coordi-
nates to physical situation. Because he tailors his coordinate
system to the problem, rather than automatically choosing a
generic system, his Cartesian resource has become more
solid in this context.

At the TA’s prompting, Wes continues to write Newton’s
second law for the system and starts to break the forces into
components, defining 6 as the angle between the horizontal
and the position of the bob (6, in Fig. 4). His choice of
Cartesian coordinate system complicates the problem, and he
gets stuck.

Derek uses Wes’s confusion as evidence that a Cartesian
system is inappropriate. As illustration, he writes Newton’s
second law and breaks it into r and 6 components. Derek
writes

d*e,

> F.=m e (1)
d*o,

T cos 6=m PR (2)

After writing Egs. (1) and (2), Derek reads them aloud. In
reading them, he corrects himself: because 6 is a coordinate
in its own right, he does not need to use the subscript x. His
equation, amended, reads

Week 4
o[ (&) s>
Week 10

lar ) ( Car-
po tesian

FIG. 7. A comparison of plasticity of polar and Cartesian for
Wes in weeks 4 and 10. Cartesian has become more solid as his
Cartesian choices become tailored to the problem at hand, while his
polar resource seems more plastic.
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Week 4

<p [ o ) >

Week 10

<P ( polar ) S:>

FIG. 8. A comparison of the plasticity of Derek’s polar resource
in weeks 4 and 10. In week 4, there was insufficient evidence to
know how plastic polar is (only that it is more solid than Wes’s). In
week 10, Derek’s derivation details indicate that it is plastic.

T 0 6 (3)
cosSv=m——-.
dr’

This equation differs from the standard physics equation be-
cause the angle defined as 6 is the complement of the typi-
cally chosen angle. Furthermore, it is dimensionally incon-
sistent: the left-hand side has units of force and the right-
hand side has units of mass per time squared. These
differences aside, Derek’s equation has the right form for the
differential equation.

An equation in place, the TA again asks the students to
label their coordinates on their diagram. Derek first copies
over Wes’s definition of 6 (6, on Fig. 4), then argues that by
alternate interior angles, it is equal to 6#,. The TA asks where
0 is equal to zero, and Derek redefines 6 to be 65, the com-
mon and calculationally easy physicist response. When the
TA asks the direction of @ at the instant shown, Derek argues
that the bob is moving in a circular arc and that, at any point

along the arc, @ is tangent to the arc. He draws 94. With all
four @ definitions arrayed before him, Derek expresses doubt
that he has a sensical answer, as shown in Fig. 6.

We interpret the evidence from the week 10 group inter-
view to indicate even more strongly that Wes’s polar re-
source is very plastic (Fig. 7). It is not well connected to
other resources, in particular with calculational ease. Derek,
whose polar resource seemed more solid than Wes’s, shows
evidence of problems with the ease of applying the natural
coordinates for this problem, indicating that it is still plastic
to him (Fig. 8). We present resource graphs of the resource
use by Wes and Derek in Fig. 9.

V. DISCUSSION

In this paper, we introduce a theoretical structure by
which we can understand the development of new resources
and their connection to existing resources. We build from
Resource Theory. One of the elements of Resource Theory is
that resources can be nested, containing other resources. We
represent some of this structure through resource graphs. We
add ideas from Process/Object and RBC theory to help us
develop observable tools for understanding the plasticity of
resources as they develop over time. We identify four re-
source heuristics (R1—reusable, R2—referrable, R3—
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FIG. 9. Resource graphs of Wes and Derek for the week 10
miniview. Note the explicit lack of connection between ease and
polar resources for Wes but not for Derek.

nameable, and R4—activatable) and five plasticity heuristics
(Pl—ease of wuse, P2—recency of construction, P3—
elaboration, P4—ijustification, and P5-extended use) to aid in
identifying resources and their plasticity. These heuristics
arise as extensions of previous discussions of the develop-
ment of primitives and resources.

To make a plausible argument for the validity of our con-
struct of resource plasticity, we have applied our theoretical
structure to help explain student reasoning about coordinate
systems in a canonical physics problem that nevertheless
presents difficulties to students. We have shown resource
graphs of two students arguing about which coordinate sys-
tem to use. We used these graphs to indicate the level of
plasticity of two specific available coordinate systems (polar
or Cartesian).

We find that students sometimes persist in using an inap-
propriate Cartesian system despite professed knowledge of
polar coordinates, indicating that Cartesian coordinates are
quite solid to these students. Furthermore, students must re-
derive (rather than recall) the details of the polar coordinate
system, indicating that polar coordinates are quite plastic.

The plasticity continuum provides a measure for re-
sources as they are being created. It extends Resource
Theory to those situations when students struggle to learn
ideas wholly unfamiliar to them and not describable in a
primitive sense. Detailing the interactions between resources
gives us better insight into the working of student minds and
lets us build better models of our students and their
learning.*’
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