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Abstract 

We report on a study to investigate the common difficulties that students encountered when 

solving problems in different representational forms in an introductory physics course and the 

scaffolding that might help students overcome those difficulties.  We conducted 

teaching/learning interviews with 20 students in a first semester calculus-based physics course.  

In those interviews, students had a chance to work with problems sharing the same physical 

similarities but different in representation. Students were provided verbal hints whenever they 

were unable to proceed. We present the interview problems, common difficulties that students 

had and the hints we provided to help them overcome those difficulties. 
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Introduction 

The use of multiple representations in solving introductory physics problems has been of 

great interest to physics education researchers.  There have been studies addressing the benefits 

of using different representations in solving physics problems (De Leone & Gire, 2005; Van 

Heuvelen & Maloney, 1999), the strategies to facilitate students’ problem solving across 

representations (Van Heuvelen & Zou, 2001), as well as other pedagogical aspects of helping 

students construct representations. (Dufresne, Gerace, & Leonard, 1997; Heller & Reif, 1984; 

Kohl, Rosengrant, & Finkelstein, 2006; Larkin & Simon, 1987; Rosengrant, Van Heuvelen, & 

Etkina, 2006; van Someren, Reimann, Boshuizen, & de Jong, 1998).  Meltzer (2005) found that 

students’ performance on similar problems posed in different representations might yield 

significantly different results. 

However, there have not been many studies addressing the specific types of difficulties 

students might have with different kinds of representations as well as the difficulties they might 

encounter when transferring their problem solving skills across representations.  Rosengrant, 

Van Heuvelen, & Etkina (2009) investigated the thought processes of students when using 

particular representations, but did not figure out the difficulties students had with each 

representation.  Tuminaro (2004) addressed the difficulties students had with mathematics in 

physics, but did not address the difficulties students might have with mathematical 

representations of physics problems. 

In this study, we investigated the difficulties students encountered when solving 

introductory mechanics problems in numerical, graphical, and equation representations.  

Specifically, we addressed the following research questions: 
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(i) What are the common difficulties that students encounter when solving physics 

problems in different representations?  

(ii) What kinds of hints are useful in helping students overcome those difficulties? 

This study is the first step toward the building of an online system which is responsive to 

students’ need for assistance when they are unable to proceed in a problem. The common 

difficulties and successful hints determined from this study constitute a research-based database 

for that online system, which may address students’ needs better than the current systems built 

on the intuition of the creators on what students need help with and what prompts are helpful.  So 

in this study, we focus on the mechanics of solving the problems and we are interested in the 

specific kinds of difficulty students encountered and corresponding hints that might help students 

overcome those difficulties. 

Theoretical Framework 

The theoretical framework that is applicable to this study is Vygotsky’s Zone of Proximal 

Development (ZPD) (1978).  The ZPD is defined as the difference between what a learner can 

accomplish by her/himself and what they can accomplish with help from another more 

experienced individual.  The help provided by the more experienced peer or instructor is known 

as scaffolding.  Eventually, the learner develops the necessary knowledge and skills to a point 

where they are able to accomplish the task without help from others. 

In this study, students were provided with a previously unseen problem and asked to 

solve it.  As they progressed through the solution, they encountered difficulties.  The causes of 

these difficulties ranged from lack of attention to certain features of the problem to deeper 

mathematical or conceptual difficulties.  To enable students to overcome these difficulties, they 

were provided with explicit or implicit hints that were mostly in the form of questions that were 
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designed to get the students to change the way in which they were thinking about the problem in 

both minor as well as significant ways. 

In terms of Vygotsky’s notion of the ZPD, the difficulties encountered by students 

represented the lower boundary of the ZPD, i.e. the point at which they were was unable to make 

progress on the problem themselves and needed assistance from the interviewer to proceed.  The 

hints provided by the interviewer to enable the student to overcome the difficulties were the 

scaffolding.  The interviewer was expected to provide hints that were within the learners’ ZPD.  

A hint that was beyond the ZPD was not understood by the learner and hence would not facilitate 

the learner to make progress toward finding a path to the solution.  Thus we can use Vygotsky’s 

theory of ZPD to interpret the difficulties and hints provided to the learner to enable them to 

solve the problem themselves. 

Methodology 

Teaching Interviews 

The teaching/learning interview is a research tool that we have adapted from the 

Teaching Experiment, which has been used effectively by many researchers to gain insights into 

the strategies that support student learning (Steffe, 1983; Steffe & Thompson, 2000).  Our 

adaptation of a teaching experiment, which we call the teaching interview, was developed by 

Engelhardt, Corpuz, Ozimek, & Rebello (2003).  The teaching interview differs from clinical 

interview in an important way.  While the goal of a clinical interview is typically to investigate 

students’ ideas without influencing these ideas, the goal of a teaching interview is to specifically 

facilitate students’ development of ideas and to provide the necessary scaffolding.  In a 

teaching/learning interview the researcher can probe how a learner reacts to different kinds of 

scaffolding.  In this study, teaching/learning interviews were designed to investigate as well as to 
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scaffold students’ problem solving processes.  Specifically, we were interested in investigating 

how learners apply mathematical concepts to physics problems and how they can transfer their 

problem solving skills across different problem representations. 

Participants 

We conducted individual teaching/learning interviews with 20 students randomly 

selected from a pool of 102 volunteers enrolling in a first-semester calculus-based physics course 

(covering mechanics and thermodynamics at the introductory level).  The majors of the students 

that participated in our interviews are given in Table 1. 

Interview Details 

Each student was interviewed four times during the semester, each time after an exam in 

their physics class.  In each interview, students were asked to solve three problems, including a 

problem from the most recent exam in the course (original problem), a modified version of the 

original problem in which part of the information was provided as a graph (graphical problem) 

and a modified version of the original problem in which part of the information was provided as 

an algebraic equation (equation problem).  All of the interview problems used in this study are 

presented in the appendix at the end of this paper. 

Students were asked to think aloud as they solved the problems on paper.  Verbal hints 

were provided by the interviewer whenever students were unable to proceed or were on the 

wrong track.  All of the interviews were videotaped and audio recorded and students’ worksheets 

were collected. 

Data Analysis 

For the purpose of identifying the difficulties and hints in the interviews, we created a 

“pseudo-transcript” of each interview in which we recorded the main ideas of each sentence in 
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the conversation between the interviewer and the student and the writing of students on their 

worksheets.  We deemed the pseudo-transcript to be sufficient for the purposes of our analysis, 

since it provides a clear description of the difficulties that students encountered while solving the 

problem, the hints that were provided to them to overcome the difficulty as well as their 

responses to the hints. 

A difficulty was determined when the student explicitly (by saying sentences like “I don’t 

know how to do this”) or implicitly (by pausing for a long while -- more than 15 - 20 seconds) 

expressed an inability in accomplishing a specific task which contributed to the solution of the 

problem (e.g. identifying the principle to use, extracting information from a graph, setting up a 

correct integral, etc.) or revealed an error in implementing calculations (e.g. using incorrect value 

of quantities in an equation, using incorrect mathematical tools, etc.).  The following 

conversation from an interview with a student on the equation problem of interview 3 

demonstrates how the difficulties and hints were counted. 

Interviewer: Now that you know you have to find work done by friction, how would you 

do that? 

Student: Could I plug in … zero for x at the beginning and 5 at the end? [Difficulty on 

Quantity – does not know how to find work done by friction] 

Interviewer: In this problem, is the force constant? [Hint on Information – suggest 

student take a more careful look at the information given] 

Student: No. 

Interviewer: Then at each point you have a different value of F, so you don’t know which 

value to plug into F.d.  What should you do with a changing force? 
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Student: [pause] I know D=5m but I don't know how to find the F.  It gives it, but I don't 

know what to do with F.  [Difficulty on Quantity – does not know how to find work from 

the equation of force as a function of displacement] 

Interviewer: For a constant force, work is F.d.  How can you modify that to find work 

done by changing force?  

Student: I don’t know. 

Interviewer: Okay.  Suppose on a very short distance between two close points the force 

is really close to a constant that you can apply Fd. Then you do the same for the next 

points and add up everything.  Then what do you have? [Hint on Mathematical Meaning 

– helps student recognize the meaning of a mathematical process] 

Student: Work over the whole distance. 

Interviewer: Right.  And what is the mathematical operation for that process? [Hint on 

Mathematical Process – triggers student to relate a mathematical operation and a 

mathematical process] 

Student: It's the summation but would that just be the integral? 

Interviewer: Right. 

A hint was a question or a piece of information provided by the interviewer when the 

student encountered a difficulty when the student was on the wrong track toward the solution, or 

was unable to proceed.  In contrast, a follow-up question was a question asked by the interviewer 

to clarify a student’s idea and reasoning when the student was on the right track toward the 

solution.  The following conversation from the beginning of the equation problem in interview 2 

provides an example on the difference between a hint and a follow-up question. 
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Interviewer: How is this problem different from the previous problems?  [Follow-up 

Question to start the problem] 

Student: This is a lot like the last problem.  You're given a function instead of a graph 

and h will be found the same way.  The only thing we have to find now is k.  [plug x  = 

.2m into F(x) and get F = 80N]  [This does not count as a difficulty yet because we are 

still not sure what the student intends to do] 

Interviewer: How does that force help you in finding k?  [Follow-up Question to clarify 

what student is doing] 

Student: Then I divide this force by the compression to get k.  [take 80N divide by 0.2m 

and get 400 N/m]  [This is difficult because now it’s clear that the student is misusing the 

equation of force as a function of displacement] 

Interviewer: Does the function of force look like F = kx?  [Hint on Information – suggests 

student looks at the force function in the problem statement] 

Student: No.  So is it F = kx + kx2 then?   

Interviewer: No.  This is a non-linear spring and it doesn’t have a spring constant.  [Hint 

on Conceptual Information – provides student conceptual knowledge of physics] 

A table of codes was developed to categorize the difficulties and hints.  A code was 

assigned to each difficulty a student encountered and each hint the interviewer gave.  The inter-

rater reliability for coding was about 80% before discussion and about 99% after discussion 

between coders.  The codes were then sorted into categories of difficulties and categories of 

hints.  We determined the number of difficulties in each category a student encountered and the 

number of hints the interviewer provided in each interview and across many interviews.  This 

analysis provided information on the major types of difficulties students encountered in solving a 
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problem in a certain representation and how difficult a problem in this representation was in 

comparison to a similar problem posed in another representation.  It also suggested the kinds and 

amount of help students needed to solve a problem.  A qualitative analysis of the interview data 

also provided important insight into students’ problem solving process, so it was also employed 

to determine emergent themes in students’ performance.  The emergent themes are described in 

detail in the following section. 

Findings 

We present the categories of difficulties students encountered, the strategies we used to 

facilitate them to overcome those difficulties, the effect of the sequence of problems on students’ 

difficulties and the emergent themes in students’ performance. 

Categories of Difficulties 

A total of 17 codes for students’ difficulties were collapsed into eight categories.   

• D-PRINCIPLE: Using the inappropriate principles to solve the problems or writing 

incorrect expressions of those principles.  An example of this type of difficulty is 

when a student included only the work done by friction in ‘Work-Kinetic Energy’ 

theorem and not work done by other forces. 

• D-QUANTITY: Using inappropriate physical quantities to describe the situation, 

confusing physical quantities, not knowing how to calculate a quantity or using 

incorrect units of physical quantities. 

• D-FORMULA: Misinterpreting the meaning of a formula or not knowing the 

formulae for physical quantities such as rotational inertia of a sphere or potential 

energy of a spring. 
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• D-VALUE: Using inappropriate values of quantities to put in a formula or an 

expression.  For example, using the incline length as height when calculating 

gravitational potential energy. 

• D-GRAPH: Inability to read off values, extract and process information from a graph 

such as the vertical intercept or using the graph to calculate a physical quantity. 

• D-MATH: Inappropriate use of mathematical concepts or incorrect manipulation of 

mathematical processes, e.g. confusing sine and cosine, incorrect setup or computing 

of integral. 

• D-FUNCTION: Misinterpreting or not knowing how to use the equation provided to 

find the desired quantities.  For instance, students plugged values of displacement into 

the equation of force as a function of displacement to find work rather than 

integrating the function. 

• D-CALC: Simple mathematical errors in calculation such as not squaring velocity in 

calculating kinetic energy. 

Categories for Hints 

A total of 20 codes for the hints provided to students were collapsed into seven 

categories.  Almost 80% of the hints were provided in the form of questions rather than direct 

statements to the students. 

• H-PRINCPLE: Questions cuing students to reflect on whether a principle was applicable.  

For instance, “Is there any kind of friction in this problem?” was asked when students 

were not sure if the principle of conservation of energy applied. 
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• H-INFO: Asked students to look more carefully at the problem statement so that they 

could attend to previously overlooked information.  For example, “What is the shape of 

the object in this problem?” 

• H-QUANTITY: Students were asked to decide which physical quantity was applicable in 

a situation, to plan a strategy to find the desired quantity or to recognize the units of 

quantity. 

• H-FORMULA: Helping students recognize the meaning of a formula, expression, 

equation, result, or recognize a mistake in their equations or formulas.  For example, 

when students wrote the expression for conservation of energy with friction as ∆K + ∆U 

= 0, they would be asked, “How does friction affect your expression of conservation of 

energy?” which helped students recognize that the correct expression should be ∆K + ∆U 

= W, where W was the work done by friction. 

• H-GRAPH: A direct question asking students to read information from the graph, such 

as, “At x = 0.2m, what is the force?” or an indirect question prompting them to use the 

graph to accomplish a task such as, “How do you calculate work using the graph of force 

vs. distance?” 

• H-MATH: Reminding students of mathematical concepts they might have forgotten or 

confused, such as “Sine is opposite/hypotenuse.” or helping them recognize the meaning 

of integral to set up the correct integral. 

• H-CALC: Helping students recognize calculation errors by asking whether their results 

“made sense.” 

Besides the common difficulties students experienced while solving the problems in 

general, we were specifically interested in those difficulties caused by the change in 
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representation.  An “R” was added in front of a code each time it appeared to indicate a difficulty 

caused by the change in representation of the problems.  That is, a difficulty a student 

encountered when doing a task which he/she had already done successfully in another 

representation within the same interview.  For example, the code “D-QUAN-CALC” was 

assigned when a student did not know how to find potential energy stored in a spring in the 

original problem, while the code “R-D-QUAN-CALC” was assigned if a student did not know 

how to do that from the given graph or equation of force as a function of spring compression in 

the same interview.  A similar coding strategy was also applied for the hints. 

Sequencing Effect 

We also investigated the effect of the sequence of problems presented to students on their 

performance by giving half of the students the graphical problem before the equation problem 

(which we called the G-E sequence) and the other half of the students the equation problem 

before the graphical problem (which we called the E-G sequence).  In seeking the sequencing 

effect, we focused only on the difficulties caused by the change in representation of problems.  

The average numbers of difficulties caused by representational change that each student 

encountered in each sequence in interviews 2 and 4 are given in Tables 1 and 2, respectively. 

The first trend that we ought to point out is that the students always had more difficulties 

with the first problem than the second.  This indicates that students learn skills in the first 

problem that they then apply to the second problem.  Not a surprising result; however, it is 

important to note that improvement in skills occurs in training. 

A sequencing effect could be observed in each interview when we compared the average 

number of difficulties each student encountered in the G-E sequence with the E-G sequence.  In 

interview 2, each student had an average of 5.25 difficulties in the G-E sequence while having 
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only 1.5 difficulties in the E-G sequence.  This suggested that students had fewer difficulties if 

they attempted the equation problem first and the graphical problem later.  However, the data 

from interview 4 showed the opposite effect.  Each student had an average of 0.75 difficulties in 

the G-E sequence while having 2.84 difficulties in the E-G sequence.  This apparent 

contradiction could be explained as follows.  In the graphical problem in interview 2, students 

could find potential energy stored in the spring by either finding the spring constant and spring 

compression from the graph to plug into ‘ 2

2
1 kx ’ or finding the area under the graph.  When given 

the graphical problem first, most students attempted the first method in which they encountered 

some difficulties reading off information from the graph (R-D-GRA-INFO).  In contrast, when 

given the equation problem first, students only had a few difficulties finding work from the force 

equation because it was observed that students had a tendency to integrate whatever variable was 

changing.  This strategy appeared to have been productive in this problem even though students 

did not really understand the physical meaning of integration.  Then when these students moved 

onto the graphical problem, they were able to recognize the method of finding the area under the 

graph. 

Student: “This problem also has friction but it tells you the friction by a graph of 

the equation.” 

Interviewer: “Okay, so how would you find work in this problem?” 

Student: “It would be the area.” 

Interviewer: “Which area?” 

Student: “The area under the curve.” 

This decreased the number of difficulties students encountered in the graphical problem, 

which in turn decreased the average number of difficulties.  
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In interview 4, the situation was reversed when the graphical problem was more 

straightforward than the equation problem.  The graph provided in this interview was not linear, 

so none of the students attempted to find “coefficient of friction” as they did with the graph in 

interview 2.  Instead they went on to find the area under that graph and had no difficulty with this 

task.  After calculating the area (in unit of Newton times degrees), students had some difficulties 

with converting units to get to the right unit of work, which is Newton times meter.  The 

equation of rolling friction force as a function angle given in interview 4 was not easy to handle 

for those students who did not really understand the concept of function and the physical 

meaning of integration.  Some students did not know what to do with such a function.  Some 

asked the interviewer whether it meant “F is a function of θ” or “F times θ”.  Another difficulty 

came from finding work done by friction, for which purpose an integral of F(θ).dθ was not 

enough because the correct integral for work should be that of ‘F(θ)ds’, in which ‘ds = R.dθ’.  

Student: “I’m not sure what to do with this function … Is this ‘F times θ’ or ‘F is 

a function of θ’?” 

Interviewer: “F is a function of θ.” 

Student: “So I should take derivative or integral of F.” 

Interviewer: “Okay, so derivative or integral?” 

Student: “Derivative … I guess.” 

Interviewer: “You need to integrate force to find the total work done by that 

force.  So which integral should you take?” 

Student: “Integral of F.” 

Interviewer: “With what variable?” 

Student: “Theta”.  [Wrote down ∫ θθ dF )( ]  
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All students had difficulties making use of the function and could only set up the right 

integral after several hints from interviewer.  For students following the G-E sequence in 

interview 4, they had no major difficulty finding the area under the graph, but had some 

difficulties converting the unit afterward.  These difficulties were not due to the representational 

change so they were discounted in our analysis of the sequencing effect, although those 

difficulties helped students with the equation problem that came later in which they could take an 

integral of F(θ).dθ to get the area under the graph of F(θ) versus θ and then convert units to get 

work.  For students following the E-G sequence, the difficulties with units were actually included 

in the equation because after knowing that an integral of F(θ).dθ was not the correct one for 

work, students tried to set up the right integral of F(θ).ds which then led them directly to the 

correct value of work.  This task increased the average number of difficulties per student with the 

equations representing functional relationships. 

Emergent Themes in Students’ Performance 

Applying Case-reuse Strategies. 

We observed in our interviews that students tried to mimic previous problems whenever 

possible.  This behavior was expected and could also be productive when used appropriately 

(Jonassen, 2006).  However, in most cases in our interviews, reusing the original problem was 

not a productive strategy for students while they were trying to solve the graphical and equation 

problems. 

The original problem of interview 2 gave students a linear spring with the spring constant 

k provided.  Students found the spring potential energy using the formula 2)2/1( kxU = .  Then in 

the graphical problem, students were provided with a linear graph of spring force F (in Newtons) 

versus the spring’s compression x (in meters).  Students did not find the potential energy stored 
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in the spring by calculating the area under the graph of F vs. x as we would have preferred.  

Instead, they tried to find spring constant k so that they could reapply 2)2/1( kxU = .  In this 

situation, the case-reuse strategy (Jonassen, 2006) helped because the spring constant could be 

calculated as the slope of the graph of F vs. x, due to the relation F kx= .  However, the case-

reuse strategy turned out to be inappropriate as students moved to the equation problem in which 

they were given a non-linear spring whose force depends on the compression as per the equation 

21000 3000F x x= + .  Most students tried to find the spring constant using the formula xFk /= .  

As students obtained the result 1000 3000k x= + , they were asked the question “Is your ‘spring 

constant’ a constant?” which helped them recognize that they could not find the spring potential 

energy simply by applying 2)2/1( kxU =  as they had done in the previous problems.  Most 

students were unable to proceed beyond this point.  It appeared that students lacked the necessary 

knowledge and skills to realize that the non-standard equation of force as a function of 

displacement was itself a cue that Hooke’s Law was not applicable and that they could not 

simply find the force constant. 

They were prompted to refer back to the graphical problem where they had been guided 

to find the spring potential energy without knowing the spring constant by finding the area under 

the graph.  Then the question “The effect of which operator on a function is equivalent to finding 

the area under the graph of that function?” seemed to trigger students to think of performing an 

integral of the function to find the spring potential energy. 

[Student found k = F/x = 1000 + 3000x, then plugged in ½ kx2 to find spring potential 

energy.  Then he had the equation: ½ mv2 = ½ (1000 + 3000x)(.2)2 – mgh.] 

Interviewer: Now you have an equation with v and x, how do you solve it? 

Student: [pause] So we need another way. 
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Interviewer: Can you think of anything we used in the previous problem that would help? 

Student: No. 

Interviewer: Well, in the graphical problem we talked about finding the potential energy 

of a spring without knowing k and x explicitly. 

Student: The area. 

Interviewer: What operator is equivalent to finding the area? 

Student: Integral. 

Interviewer: Can you set up an integral in this problem? 

Student: I think I can. 

Extracting Information from a Graph.  

It was also observed in our interviews that most students needed help extracting the 

information they needed from the graph.  This information included the coordinates of a point, 

the area under the graph, the value of a physical quantity that each division on the graph 

represents, etc.  Some students were able to read off explicit information from the graph such as 

the quantities being plotted or the coordinates of a point, but then did not know how to go further 

with that information. 

The idea of calculating the slope of the graph seemed to appear automatically in the 

students’ minds whenever they were provided a graph, even when the slope had nothing to do 

with the quantity they wanted to solve for.  This helped students find the spring constant k in the 

graphical problem of interview 2 as mentioned above, but it caused students difficulty as they 

moved on to the graphical problem of interview 4 in which there was a non-linear graph and the 

slope was changing continuously along the curve.  By interview 4, however, students were able 

to recognize that the area under the curve was the work done by friction since they had seen 
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those kinds of problems in interviews 2 and 3.  Because the graph in problem 4 was not a straight 

line, we expected students to suggest a method to obtain a good estimation of the area under the 

graph.  Some students divided the area into several smaller pieces by vertical lines and then 

divided each piece into a triangle and rectangle to calculate the areas.  Others counted the 

number of squares under the graph.  About two thirds of the students who counted the squares 

reported the number of squares under the graph as the area.  They forgot to take into account the 

physical quantity each square represented, which in this problem was 2.5 Newton times degrees. 

Physical Meaning of Differentiation and Integration. 

Throughout our interviews, students appeared to have adequate mathematics knowledge 

needed to solve our interview problems, but were unable to apply that knowledge in the contexts 

of physics problems.  An example was the physical meaning of differentiation and integration.  It 

was observed that students had significant difficulty setting up the correct integral to calculate 

the desired physical quantity, but then computed that integral very easily.  When students were 

given a function ( )f x  and realized that they needed to integrate that function, the integral 

students set up was ( )f x dx∫ , regardless of what ( )f x  represented and what they were looking 

for.  So, hints on meanings of differentiation and integration did not make much sense to 

students.  Rather, hints on some basic things like units of quantities seemed to help students 

better.  Analyzing the equation problem in interview 4 (Figure 2) provides a good example for 

this situation. 

In the equation problem of interview 4, students were given an equation of rolling friction 

force as a function of angle.  To be able to apply conservation of energy, students must calculate 

the work done by this friction, which could only be done by computing an integral of the force 

function.  Recalling that integrating means chopping and adding up little pieces, one recognizes 
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that he must divide the curve into small segments, find the work done by friction on the relevant 

segment, and add up the work over all the pieces.  Mathematically, the work done by friction on 

a small segment of the curve is ( ) .F dsθ  in which ds Rdθ=  is a small segment of length along 

the curve.  Then the integral for work is ∫
2/

0

)(
π

θθ RdF . 

As discussed above, most of them attempted to compute the integral ∫
2/

0

)(
π

θθ dF  (similar 

to ( )f x dx∫ ).  None of the students expressed any doubt on what F(θ) and ∫
2/

0

)(
π

θθ dF  

represented.  Physically, the integral ∫
2/

0

)(
π

θθ dF  meant adding up all of the infinitesimal segments 

of a quantity defined as force times angle, which had no physical meaning.  In this case, with the 

first few students we tried to guide them to convert dθ  to ds  by the relation ds Rdθ=  so that they 

had the correct integral.  Students followed our hints to do so but said that they did not 

understand why they had to do that step.  We recognized that in this problem, the factor R (radius 

of the curve) didn’t need to come into the integral at the beginning but instead could be 

multiplied with the result of ∫
2/

0

)(
π

θθ dF  at the end of the process.  So for later students, we let 

them compute the integral ∫
2/

0

)(
π

θθ dF  they had set up by themselves until they obtained a number.  

Students were then asked what the unit of that number was.  Most of them were able to say that 

the unit of their result was Newton times Radians.  Through appropriate questioning we enabled 

students to recognize that Newton times Radians was not the unit of work and guided them to 
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convert that unit into Newton times meters.  During this process students recognized the missing 

factor R (radius of the track) in their calculations. 

Summary 

We conducted individual teaching/learning interviews with students in a first-semester 

calculus-based physics course to investigate the kinds of difficulties students had when solving 

problems in numerical, graphical, and equation representations and the kinds of hints that might 

help them overcome those difficulties.  We found that students encountered many kinds of 

difficulties when solving our interview problems.  Beside the difficulties with applying physics 

knowledge to a problem (not knowing what physical principle to use to solve the problem, not 

remembering the formula of a physical quantity, misunderstanding the terms in a formula, etc.), 

there were also difficulties in applying mathematical ideas and processes into the context of a 

physics problem (interpreting the physical meaning of the slope of a graph, finding work done by 

a changing force by integrating the force function or estimating the area under the graph of force 

versus distance).  With proper hints given by the interviewer, all of the students were able to 

solve the problems correctly.  Explicit hints (statements asking students to refer to some 

information or knowledge or to perform a specific calculation) seemed to help students get 

started on each problem, while more implicit hints (questions asking students to reflect on what 

physics knowledge and mathematical process was applicable in each physical situation) seemed 

to trigger students’ thinking of the physical meaning of mathematical processes.  It might not be 

surprising that students used the case-reuse strategy whenever possible to solve the problem, 

although that strategy was not always productive in our interviews.  It would be interesting to 

find out that the sequence of problems in multiple representations given to students seems to 
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have a certain effect on their performance in our interviews, although it still needs to be 

investigated in more detail before a conclusion can be reached. 

Implication 

This study provided a closer look at students’ difficulties when solving physics problems 

in multiple representations.  It constitutes a research-based database on which an online system 

can be built to better address students’ needs for assistance when solving physics problems in 

numerical, graphical, and equation representations. 

This study also contributes to the body of knowledge in the area of use of multiple 

representations in solving problems in introductory physics.  It informs us of the barriers that 

students encounter as they progress to representational competence, which is an important skill 

that future scientists and engineers should have.  It also suggests the kinds of scaffolding that 

might be helpful for students when solving problems in different representations. 

This study targets an important issue in science education: preparing future scientists and 

engineers with the competence to solve problems in a variety of representations.  It provides 

ideas on the kinds of scaffolding instructors and curriculum developers might include in their 

instruction or curricula to facilitate students’ representational competence. 
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Table 1 

Majors of Students Participating in our Interviews 
 

Major Number of students 

Mechanical Engineering 6 

Electrical Engineering 5 

Civil Engineering 2 

Chemical Engineering 3 

Architectural Engineering 1 

Environmental Engineering 1 

Chemistry 1 

Open Option 1 
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Table 2 

Average Number of Difficulties per Student Due to Representational Change in Interview 2 

 G-E sequence E-G sequence 

Graphical problem 3.50 0.17 

Equation problem 1.75 1.33 
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Table 3 

Average Number of Difficulties per Student Due to Representational Change in Interview 4 

 G-E sequence E-G sequence 

Graphical problem 0.50 0.17 

Equation problem 0.25 2.67 
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Appendix 

Interview 1 
 
Problem 1 
 

The position of an object moving along an x axis is given by x = 3t3 - 2t + 4, where x is in 

meters and t in seconds. 

a) Find at least one time when the velocity is zero. 

b) What is the average acceleration between 0 and 3 seconds? 

c) What is the acceleration at t = 3 seconds? 

 
Problem 2 
 

The position of an object moving along an x axis versus time is given by the graph below, 

where x is in meters and t in seconds. 

 

 

a) Find at least one time when the velocity is zero. 

b) What is the average acceleration between 0 and 5 seconds? 

c) What is the acceleration at t = 3 seconds? 

 



FACILITATING STUDENTS' PROBLEM SOLVING ACROSS 29 

Interview 2 
 
Problem 1 

A spring of spring constant 3.0 kN/m is compressed a distance of 1.5 cm and a small ball is 
placed in front of it. The spring is then released and the small ball, mass 0.1 kg, is fired along the 
slope and launched into the air at point A which is 10 cm above the spring. The angle θ of 
velocity at launch is 30°. Friction is negligible.   

 
 
What is the speed of the ball at the launch point (point A)? 
 
Problem 2 

A 0.1 kg bullet is loaded into a gun (muzzle 
length 0.5 m) compressing a spring as shown.  The 
gun is then tilted at an angle of 30° and fired. 

The only information you are given about the 
gun is that the barrel of the gun is frictionless and 
when the gun is held horizontal, the net force F (N) 
exerted on a bullet by the spring as it leaves the fully 
compressed position varies as a function of its 
position x (m) in the barrel as shown in the graph 
below. 

What is the muzzle velocity of the bullet as it 
leaves the gun, when the gun is fired at the 30° angle as shown above? 
 
Problem 3 
 

A 0.1 kg bullet is loaded into a gun (muzzle length 0.5 m) 
compressing a spring to a maximum of 0.2 m as shown.  The 
gun is then tilted at an angle of 30° and fired. 

The only information you are given about the gun is that 
the barrel of the gun is frictionless and that the gun contains a 
non-linear spring such that when the held horizontal, the net 
force, F (N) exerted on a bullet by the spring as it leaves the 
fully compressed position varies as a function of the spring 

compression, x (m) as given by: 230001000 xxF +=  
What is the muzzle velocity of the bullet as it leaves the gun, when the gun is fired at the 30° 

angle as shown above? 
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Interview 3 
 
Problem 1 

A 3.5 kg block is accelerated from rest by a spring, spring constant 632 N/m that was 
compressed by an amount x. After the block leaves the spring it travels over a horizontal floor 
with a coefficient of kinetic friction µk = 0.25. The frictional force stops the block in distance  
D = 7.8 m. 

 
What was the spring compression x? 
 
Problem 2 

A 0.1 kg bullet is loaded into a gun compressing a spring of spring constant k = 6000 N/m.  
The gun is tilted vertically downward and the bullet is fired into a drum 5.0 m deep, filled with a 
liquid. 

The barrel of the gun is frictionless.  The resistance force provided by the liquid changes with 
depth as shown in the graph below.  The bullet comes to rest at the bottom of the drum 

 

 
What is the spring compression x? 
 
Problem 3 

A 0.1 kg bullet is loaded into a gun compressing a spring of spring constant 
k = 6000 N/m.  The gun is tilted vertically downward and the bullet is fired into 
a drum 5.0 m deep, filled with a liquid. 

The barrel of the gun is frictionless.  The frictional force F(N) provided by the 
liquid changes with depth x(m) as per the following function.   

26.010 xxF +=  
The bullet comes to rest at the bottom of the drum.  What is the spring 
compression x? 



FACILITATING STUDENTS' PROBLEM SOLVING ACROSS 31 

Interview 4 
 
Problem 1 

A hoop radius r = 1 cm and mass m = 2 kg is rolling at an initial speed vi of 10 m/s along a 
track as shown.  It hits a curved section (radius R = 2.0 m) and is launched vertically at point A.  
. 
 

 
 

What is the launch speed of the hoop as it leaves the slope at point A?  

 
Problem 2 

A sphere radius r = 1 cm and mass m = 2 kg is rolling at an initial speed vi of 5 m/s along a 
track as shown.  It hits a curved section (radius R = 1.0 m) and is launched vertically at point A. 
The rolling friction on the straight section is negligible. 
 

 
The magnitude of the rolling friction force Froll (N) acting on the sphere varies as angle θ 

(radians) as per the following function 
 

5.42.17.0)( 2 +−−= θθθrollF  

 

R

A 

vi 

θ 

R

vi 

A 
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What is the launch speed of the hoop as it leaves the curve at point A?  

 
Problem 3 

A sphere radius r = 1 cm and mass m = 2 kg is rolling at an initial speed vi of 5 m/s along a 
track as shown.  It hits a curved section (radius R = 1.0 m) and is launched vertically at point A. 
The rolling friction on the straight section is negligible. 
 

 
The magnitude of the rolling friction force acting on the sphere varies as angle θ as per the 

graph shown below 
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What is the launch speed of the hoop as it leaves the curve at point A?  
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