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We designed a sequence of seven lessons to facilitate learning of integration in a physics context. We

implemented this sequence with a single college sophomore, ‘‘Amber,’’ who was concurrently enrolled in

a first-semester calculus-based introductory physics course which covered topics in mechanics. We outline

the philosophy underpinning these lessons, which characterizes integration in terms of layers and

representations. We describe how Amber learned to give oral presentations in which she told a story

about how integration comes from products, sums, and limits in a variety of physics contexts. We conclude

that by the end of our lessons, Amber was able to conceptualize and explain integrals using multiple

representations. In one case, she was able to solve a novel problem about integration in an unfamiliar

context (center of mass.) Based on our previous research about integration, we suggest that these

achievements would have been unattainable with the use of a single one or two hour lesson.

DOI: 10.1103/PhysRevSTPER.8.010125 PACS numbers: 01.40.Fk, 01.40.G�

I. INTRODUCTION

Physics students are often required to perform integrals
in contexts ranging from mechanics (finding displacement
using

R
vdt) to introductory electricity and magnetism

(finding the electric field produced by a line of charge

using
R
k dq

r2
) to thermodynamics (finding work usingR

PdV). However, research by Meredith and Marrongelle
has shown that students may rely on cues to decide when an
integral is necessary, including recall, dependence (a quan-
tity that varies with another quantity), and parts-of-a-whole
cues [1]. When such cues are inadequate to decide how to
solve a problem or answer a question, we might expect that
students would not know what to do.

For example, Nguyen and Rebello asked students a
question about resistance that required integrating a vary-
ing resistivity along a cylindrical conductor [2]. Most
students said that an integral was needed ‘‘because the
resistivity was changing along the conductor,’’ making
use of a ‘‘dependence’’ cue. However, when asked to
interpret infinitesimal quantities such as dx or dA, students
were out of their depth, for instance saying that dA refers to
a changing area, when in fact it refers to a small element of
area. Helping students to differentiate between a change
dA and an area element dA, and to use these infinitesimals
correctly, may require some instruction targeted at the
student’s physical intuition about infinitesimals. It is this
kind of understanding that we addressed in this research.

Although cues may be reliable under some circumstan-
ces, we would like to encourage students to build a more
robust conceptual understanding that they can express in

words or diagrams. We designed a sequence of seven
lessons about integration in the context of introductory
mechanics and observed the progress of one student,
‘‘Amber,’’ as she participated in the lessons. Amber was
a sophomore who had previously taken one semester of
college calculus and was simultaneously enrolled in a
second semester of calculus. This simultaneous calculus
course covered simple two-dimensional integrals, for in-
stance, with functions that are constant in one of the two
dimensions, but the course did not discuss more general
situations.
Because thiswork is a case study, involving a sequence of

lessons with a single student, we are unable to provide any
specific recommendations as to how our findings may be
generalized. It may be that most students would approach
our lessons asAmber did, or on the other hand, itmay be that
Amber’s experience is unique. Further research would be
required to address such questions. However, we hope that
our case study can illustrate how a particular kind of in-
struction and assessment could be implemented and how at
least some students might respond to such instruction.
Individual instructors will have to decide for themselves
whether their students would benefit from our lessons. We
are hopeful that the ideas presented in this paper would be
suitable for students with less preparation than Amber, or
could be adapted for such students. Especially in the first
few lessons, we did not require Amber to perform complex
algebraic computations or set up a large number of equa-
tions, so it is possible that students with less skill at solving
traditional physics problems could still excel in the context
of these lessons. However, further work would be required
to investigate this possibility. We believe that of the seven
lessons, the last three required the greatest amount of
physics preparation.
In this paper, we will first consider what it means to

understand integration in a physics context. Toward this
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end, we will begin by outlining Zandieh’s framework [3]
on this topic, elaborating on the role of ‘‘layers’’ such as
sums, products, and limits. Then we will describe our own
framework for what it means to understand integration.
Briefly, our view is that a student who can engage with
integrals’ structure using sums, products, and limits, and in
several representations, such as spoken or written words,
graphs, tables, equations, and diagrams, can be said to
understand integration. All of these layers and representa-
tions are studied in the present work. Next, we will discuss
how this perspective is related to the frameworks of
Zandieh, Thompson and Silverman [4], and Sealey [5].
We will describe the content of the seven lessons we
constructed to facilitate student understanding of integra-
tion, and discuss the motivation underlying our construc-
tion of these lessons. Finally, we will consider Amber’s
reaction to the lessons and draw some conclusions.

We will not discuss all aspects of students’ understand-
ing of integration. Notably, we have not asked Amber to
think about limits of integration, even though all definite
integrals have limits of integration. There is also a great
deal to be said about the ‘‘d’’ notation, used to indicate
infinitesimals, and we hope to address this issue in greater
depth in a future paper. Notational and symbolic aspects of
the integral are a part of the equation representation in our
framework.

II. WHAT DOES IT MEAN TO
‘‘UNDERSTAND INTEGRATION’’?

In this section, we posit what we mean by understanding
integration. To do so, we describe what we mean by two
structures: (a) layers and (b) representations.We explain how
these structures are important for understanding integration.

A. Layers

Several researchers have discussed the ‘‘layer’’ structure
of differentiation and integration, for instance, the relation-
ship between integrals and sums, or between derivatives
and ratios. Zandieh describes a layered framework for
students’ understanding of derivatives [3] based on
Sfard’s process-object complementarity [6]. We will first
explain Sfard’s ideas, then discuss Zandieh’s framework.
Then, we will describe a similar framework for integration
in a physics context.

Sfard’s main idea is that mathematical entities can be
conceived of as either processes or objects, and that a
person must first possess a procedural conception, which
later becomes a structural (object) conception. This natural
order of learning follows the same path as the historical
development of mathematics, which also turns processes
into objects (‘‘reification’’). For instance, concrete objects
were counted (process) before the idea of number (object)
was invented to reify this process. Numbers were sub-
tracted (process) before the idea of a negative number
(object) was invented to reify this process.

According to Sfard, many previous authors have made
similar distinctions, such as conceptual or procedural [7,8],
relational or instrumental [9], and others. Sfard’s contribu-
tion is to see these as dualities rather than as dichotomies.
A dichotomy is a pair of concepts that are mutually
exclusive opposites. A duality is a pair of concepts that
may seem to be opposites but are really two aspects of a
single phenomenon. (Sfard uses the example of the
particle-wave duality in quantum mechanics.)
Sfard concludes that reifying, say, negative numbers,

requires starting to learn procedures that utilize them.
[Like being able to solve 5� ð�2Þ.] That is, sometimes
you have to learn the procedure without understanding the
concept. But it may happen that students, having memo-
rized the procedure, have no further motivation to under-
stand the underlying object ‘‘�2,’’ and never attain any
deeper understanding at the conceptual level. In the context

of calculus, taking a limit of the ratio limh!0
fðxþhÞ�fðxÞ

h

might be considered a process, where we imagine h shrink-
ing, but the result of this process is a single number, which
is an object. Thus, the derivative is both a process and an
object. Zandieh analyzes students’ understanding of de-
rivatives through the lens of Sfard’s process-object duality,
pointing out three layers of the student’s understanding: the
ratio, limit, and function layers. Each layer can be viewed
as a process or an object. We briefly describe each layer:
Z1. Ratio layer.—The most basic concept in the con-

struction of a derivative is the idea of a ratio. Students
should understand the connection between formulas such

as fðxþ�xÞ�fðxÞ
�x , the procedure for finding the slope of a

graph by dividing ‘‘rise over run,’’ and the idea of average

velocity as the ratio �x
�t .

Z2. Limit layer.—Next, the student should be able to
imagine the denominator of the ratio approaching zero. In
the graphical case, this means visualizing the two points on
the curve getting closer and closer together. In the kinemat-
ics representation, the student should imagine a particle
moving over a short displacement during a short time
interval, as the length of that interval becomes less and less.
Z3. Function layer.—Finally, the student is to conceive

of the derivative as a function. That is, the derivative of the
function x3 is 3x2, which is a statement about one function
(x3) becoming another function (3x2). The student could
understand this by visualizing a tangent line at every point
along a graph, instead of at just one point.
Each layer can be conceived as either a process or an

object, and each process-object pair can be represented in
the form of an equation, graph, verbalization, or kinematic
motion. For instance, the slope of a line can be determined
by the process of measuring a rise and a run, and dividing
one by the other. Once the student understands this process
well enough to perform operations on the slope itself (such
as the operation of imagining a limit of secant slopes
rotating to become a tangent line), the student is said to
understand the slope as an object.

VON KORFF AND REBELLO PHYS. REV. ST PHYS. EDUC. RES. 8, 010125 (2012)

010125-2



This framework gives no account of procedural rules for
taking derivatives of specific functions. For instance, the
derivative of fðxÞgðxÞ is f0ðxÞgðxÞ þ fðxÞg0ðxÞ. The student
can utilize this rule without really understanding the de-
rivative in Zandieh’s sense. Sfard says that such a student
possesses a ‘‘pseudostructural’’ understanding; the student
understands that there is an object called ‘‘derivative,’’ and
is able to perform operations with it, but is unable to
explain its internal structure, such as the ratio layer that
is used to define the derivative. In general, a student’s
understanding is said to be pseudostructural if they do
not understand the layers that would be used to define
that object. For instance, a student who can integrate by
parts, but does not understand that the integral is a sum,
would be said to have a pseudostructural understanding of
the integral. Another way of saying that a student has
‘‘pseudostructural’’ understanding is to say that they com-
prehend the derivative as a ‘‘pseudo-object’’ (Zandieh’s
term, [3]). A ‘‘pseudo-object’’ is any object that the student
understands in a pseudostructural way.

The concept of integration can be dissected in a similar
way to Zandieh’s method. Our approach is very close to
Thompson and Silverman’s accumulation of ‘‘multiplica-
tive bits’’ [4], as well as Sealey’s layered framework [5].
We will first describe our method, then compare it with the
frameworks of Zandieh, Thompson and Silverman, and
Sealey. Our framework describes integration using a net-
work of processes and objects, with multiple routes to
understanding. Although the network as a whole is com-
plex, we are not asserting that successful instruction must
comprehend all possible routes.

Figure 1 depicts a network of eight objects, numbered
VR1-4 and VR1-4*. There are also 10 arrows, which
represent the processes that transform or construct these
objects. Our instruction focuses on building the integral,
(VR3*), but the sum and integral functions (VR4) and
(VR4*) are included for the sake of completeness. By the
‘‘sum function’’ or ‘‘integral function,’’ we mean the sum
or integral considered as a mathematical function of its
upper limit of integration (or upper limit of summation). As

the upper limit of integration varies, the value of the sum or
integral will vary; therefore, the sum or integral can be
viewed as a function of that limit. See sections (VR4) and
(VR4*) below for further explanation.
Macroscopic quantity (VR1) and infinitesimal quantity

(VR1*).—In most physical integrals, a variable of integra-
tion is either a change (as dt or dx represent a change in
time or position) or an amount (as dm represents an amount
of mass). When the changes or amounts are macroscopic,
they may be represented with a ‘‘�’’ (change in time�t) or
with no symbol at all (mass M).
Macroscopic product (VR2) and infinitesimal product

(VR2*).—The product layers represent the integral of a
constant function, which may be represented in several
ways. The function could be written out formally, or it
could be described in words, or depicted as a rectangle on a
graph. In a physics context, it could take the form of a
particle moving at constant velocity or a rod of uniform
density. In any of these representations, the integral of the
constant function can be found by multiplication. This
multiplication process constructs an ‘‘area’’ or ‘‘product’’
object, so this layer could be called the ‘‘product layer.’’
One can construct the ‘‘infinitesimal product layer’’ by
shrinking the rectangle to have a small width; in other
words, v�t becomes vdt.
Sum (VR3) and integral (VR3*).—Next, one has to

approximate the integral of a general function by a
piecewise-constant (step) function, whose integral is a
sum of products. On a graph, the step function looks like
a staircase. To compute the approximate integral, one must
sum the areas of the rectangles, or sum the products
fðxÞ�x, v�t, etc. In this case, an approximation process
constructs a sum object. This layer could be called the
‘‘summation layer.’’ In equation form, the sum might look
like

P
n
i¼0 vði�tÞ�t. When the widths of the rectangles

approach zero, the sum becomes an integral. In our frame-
work, the integral can also be constructed by summing an
‘‘infinite’’ number of infinitesimal products (VR2*),
although a traditional calculus framework would not allow
this.

FIG. 1. A network of process-object routes to understanding integration.
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Sum function (VR4) and Integral function (VR4*).—By
varying the number of terms ‘‘n’’ in the macroscopic sum,
while keeping the interval width �x constant, we obtain a
function. This function could be written as

FðxÞ ¼ Xb x�xc

i¼0

fði�xÞ�x;

following Thompson and Silverman [4]. When the interval
�x approaches zero, we imagine a continuous function.

That is, an integral such as
R
x
0 x

0dx0 ¼ x2

2 could be concep-

tualized as a function of x allowing many possible inputs,

gðxÞ ¼ R
x
0 x

0dx0 ¼ x2

2 , rather than just a statement about a

particular value of x. This is analogous to Zandieh’s final
layer, in which the derivative value becomes a derivative
function.

Table I depicts all eight of our layers and the correspond-
ing layers in other frameworks. Sealey includes a ‘‘prel-
ayer’’ which she calls ‘‘orienting.’’ This has to do with
sense making. For instance, in one of Sealey’s problems,
students used integration to find the force exerted on the
surface of a dam, assumed to be a rectangular vertical wall,
where the pressure is proportional to the depth. In this
context, the student must integrate PdA. Amber worked
on a similar problem in our seventh and last lesson. Sealey
said that when solving this problem, ‘‘Until the students
were able to begin making sense of the meanings of
pressure and force, they did not see a need for approxima-
tions‘‘ [5]. Because Sealey’s prelayer involves understand-
ing the meanings of physical quantities, it is related to our
‘‘macroscopic quantity’’ layer.

Our framework differs from Zandieh’s [3] primarily in
that we have analyzed integration, whereas she has ana-
lyzed differentiation. Our framework is unlike all three
frameworks—Zandieh’s, Thompson and Silverman’s [4],
and Sealey’s [5]—in that we encouraged Amber to under-
stand infinitesimal quantities (VR1*) and infinitesimal
products (VR2*) on their own terms. Zandieh considers
ratios of finite quantities, and limits of those ratios, but not
ratios of infinitesimal quantities. While Thompson and
Silverman briefly mention the role of infinitesimals, they
focus on the more traditional approach involving Riemann

sums. According to the mathematical framework taught in
a standard calculus class, it is useless to take the limit of an
infinitesimal such as ‘‘vdt’’ prior to summation, since this
limit would be zero. Instead, one should take the limit of a
sum of finite quantities, as the number of those quantities
approaches infinity. But from a physical point of view,
students can be taught that an integral is ‘‘the sum of
many infinitesimally small quantities,’’ without harm to
their understanding. Therefore, our framework allows for
multiple process-object routes to understanding integra-
tion, as depicted in Fig. 1.

B. Representations

Several authors have considered representations in the
context of integration. Sealey [5] considers algebraic, nu-
merical, graphical, and contextual (related to the physical
context) representations. Ghazali et al. [10] measured stu-
dents’ understanding by asking them to translate integral
concepts between symbolic, graphical, and verbal repre-
sentations. Ghazali’s definition of student understanding
of integrals included four constructs: basic definitions,
basic operations, applications, and translation between
representations.
In a mathematical context, the most important represen-

tations may involve graphs and equations, but in a physics
context, a physical representation is of paramount impor-
tance. That is, we want students to understand what they
are adding up and why, not only that they are adding
something up. Physics students must learn to work with
verbal representations, as well as diagrams, concrete physi-
cal objects, and other representations that connect with
their informal knowledge about how the world is put
together.
When integrating velocity to find displacement, the

graphical representation involves plotting a function vðtÞ,
dividing the picture into columns, and imagining the col-
umn widths shrinking to zero. But one might ask: why are
we taking an integral at all? And why are we taking this
integral? True, the equation x ¼ vt cues us that an integral
might be appropriate, by suggesting the product layer: the
area of a rectangle could be found by multiplying vt. And
the idea of ‘‘varying velocity’’ is another cue. But even in

TABLE I. We list all eight of our layers, with corresponding equations. VR indicates
Von Korff and Rebello, S indicates Sealey, and TS refers to Thompson and Silverman.

Layer number Layer name Equation representation

VR1, SPre VR: Macroscopic quantity; S: Orienting �t
VR1* Infinitesimal quantity dt
TS1, VR2, S1 Macroscopic product �x ¼ v�t
VR2* Infinitesimal product dx ¼ vdt
TS2, VR3, S2 Sum �x ¼ P

vi�ti
VR3*, S3 Integral �x ¼ R

vdt

TS3, VR4 Step function �xðtÞ ¼ Pbt=�tc
i¼0 vði�tÞ�t

TS4, VR4*, S4 Integral function �xðtÞ ¼ R
t
t0
vðt0Þdt0
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that circumstance, not all products in physics should be
turned into integrals in the same way. For instance,
the center of mass for two particles can be found by the

expression m1x1þm2x2
m1þm2

, but even in the continuous case the

numerator’s products ‘‘mx’’ do not turn into
R
mðxÞdx. [It

is not even clear what
R
mðxÞdx would mean.] And even

assuming that we should make an integral out of x ¼ vt,
why are we plotting vðtÞ and not tðvÞ?

These questions cannot be answered using the graphical
or equation representations alone. We can answer them
only with reference to a mental model of integration, which
implies not only a graphical or formulaic conception of the
integral, but also a diagrammatic or simulative understand-
ing of the physical system, one which incorporates the
physical meanings of the variables. When we use the
term ‘‘mental model,’’ we refer specifically to the defini-
tion by Johnson-Laird [11], who defines mental models as
‘‘structural analogues of the world.’’

We hoped that Amber would become familiar with
diagrams and mental simulations that are structurally simi-
lar to the physical phenomena. Graphs and equations are
important, but these representations do not carry informa-
tion about the geometric meanings of the physical quanti-
ties. Our intervention also introduced concrete physical
objects, such as carts and springs, in order to help Amber
to make the connection between representations and the
objects they describe.

III. CONSTRUCTIVISM AS A PEDAGOGICAL
STRATEGY FOR TEACHING INTEGRATION

In our lessons, we hoped to facilitate Amber to construct
an understanding of all representations and the connections
between them. We wanted Amber to come to feel comfort-
able with all layers and representations of integration and
to demonstrate her understanding by means of verbal
presentations. However, because of the complexity of our
subject matter, we chose to begin by discussing a limited
set of layers and representations and to facilitate Amber’s
knowledge construction from this foundation. We pursued
a constructivist strategy, beginning with ideas that would
be familiar to Amber.

The word ‘‘constructivism’’ is used to describe a wide
range of philosophies about the nature of learning and
knowing [12]. According to our constructivist perspective
on learning, a lesson should give students the opportunity
to construct scientific ideas for themselves, starting from
students’ current ways of thinking. However, the lesson
designer must consider which of the students’ many ideas
are most suitable as a basis for learning. In a lesson about
integration, it might seem natural to begin with students’
preexisting knowledge about equations, which they have
studied in calculus classes. However, we chose to address
Amber’s calculus knowledge as little as possible. We were
concerned that Amber’s understanding from calculus
might be largely pseudostructural; in other words, she

might treat the integral as an unanalyzable conceptual
unit, a pseudo-object [3]. This concern emerged from
interviews we performed in a previous study [13], in which
we guided students to view �x ¼ R

vdt as an accumula-

tion of small copies of the simpler equation x ¼ vt. Many
students in this previous study demonstrated pseudostruc-
tural knowledge, accepting�x ¼ R

vdt as a rule that needs
no explanation. We assume that a student has pseudostruc-
tural knowledge of integration if he or she does not use
sums or products to interpret an integral, indicating that he
or she thinks about the ‘‘integral’’ object without under-
standing the processes that have constructed it. For in-
stance, one student said, ‘‘My Calc 1 teacher in high
school, he was real big on like distance, velocity, area,
always know how they relate . . . he pounded that into our
heads.’’ But when this same student was unable to recall
the integral of acceleration, he did not know any way to
figure out the answer. At least one student was actively
reluctant to consider a layered approach to integration even
after we led him to understand it. When asked to explain
why the displacement is the integral of the velocity, he
acknowledged the legitimacy of the layered approach, but
said, ‘‘Personally I tend to believe things that are told to me
in an equation.’’
Rather than discussing calculus, our first lesson relied on

Amber’s prior knowledge about the motion of a car on a
highway to help her arrive at an experiential understanding
of the infinitesimal relationship ‘‘dx ¼ vdt.’’ By ‘‘experi-
ential,’’ we mean that Amber incorporated the language of
ordinary experience, relating the car and its speedometer to
physical quantities. Amber demonstrated her knowledge
by solving a complicated debate problem (see the
Appendix), which required her to say which of several
hypothetical students were making correct statements.
Once Amber made progress with this verbal understand-
ing, we assigned symbols to the words, helping her to write
down ‘‘dx ¼ vdt’’ as a symbolic expression of her idea.
By the time the first lesson ended, we still had not yet
discussed calculus. So we view our approach as construc-
tivist, but we took care to build initially on Amber’s
physical intuitions rather than her calculus knowledge.

IV. METHODOLOGY

Our participant Amber, who was concurrently enrolled
in first-semester calculus-based physics, was paid to par-
ticipate in this study. She did not receive course credit for
her participation. Her small summer course, attended by
only 10 students, required students to attend four lectures
each week and was designed to cover a semester’s worth of
introductory mechanics material in two months. Of the 10
enrolled students, three volunteered for our research
project after we announced the opportunity during their
lab: Amber, Carmen, andMatt. However, Carmen andMatt
chose not to participate after the first lesson. We suspect
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that conflicts with students’ summer employment may
have been a factor in reducing participation.

Amber had taken Advanced Placement Physics B in
high school in the past, giving her a stronger than usual
background relative to students who typically take our
introductory mechanics class.1 Her math background was
similar to her classmates’. Her introductory mechanics
course contained little or no material about integration.
Near the end of the semester, she felt that her strengths
in the class were ‘‘solving mathematical equations and trig
applications’’ and her weaknesses were ‘‘knowing when to
apply certain formulas.’’ Below, we enumerate the seven
lessons and discuss the goals and plan for each. Lessons
were two hours in duration and were taught by a single
instructor. All sessions took place in the same room in
which Amber and other students worked on physics labs
for their mechanics course.

During the lessons, we sometimes provided Amber with
materials that she could work on with minimal assistance.
However, at other times the instructor participated in
extended Socratic dialogues with Amber. When preparing
Amber to give a presentation in lessons four and five, the
instructor assisted her using cues and Socratic questions but
avoided writing or drawing anything for her. The instructor
delivered a long lecture (one hour) only once, in lesson three.

For most activities, Amber and the instructor were seated
at the same table, discussing a worksheet or the lab equip-
ment. These scenes could be videotaped by a stationary
camera with no operator. When Amber presented at the
blackboard, the instructor operated the camera, sometimes
allowing the camera to zoom in on her writing. Video data
proved to be crucial, because we came to feel that Amber’s
use of multiple representations illustrated her understand-
ing of integration. By analyzing Amber’s presentations on
the blackboard, we gained a sense of the diversity and
frequency of her links between representations. To count
these links, we transcribed and coded the video data, noting
events where Amber describes the same quantity, product,
or integral using two different representations.

V. SEQUENCE OF LESSONS

In this section, we will describe the content of the seven
lessons and analyze excerpts of discussion and presentations
from several lessons. An asterisk (*) indicates that a problem
assigned for this lesson can be found in the Appendix. Our
lessons focused on one-dimensional integrals related to
Amber’s introductorymechanics course, including integrals
for displacement, work, momentum, moment of inertia, and
center of mass. In the final lesson, Amber worked with a
simple two-dimensional integral, in which she integrated

pressure over an area, although she solved this integral using
only a single variable of integration.

A. Lesson One

Throughout lesson one, Amber was working with two
other students, Carmen andMatt, who did not participate in
later lessons.
1.a.* Amber and the other students discussed an ex-

tended ‘‘debate’’ or ‘‘conflicting contentions’’ problem
[2,14] about the motion of a car. According to the problem
statement, a car’s speedometer was untrustworthy, and
three fictitious students were proposing physical quantities
that might be helpful in measuring the car’s speed. For
instance, one fictitious student thought that the change in
position since the beginning of the trip was relevant,
whereas another suggested taking a small change in posi-
tion, such as a mile. In all, nine different quantities were
put forward: x, v, t, dx, dv, dt, �x, �v, and �t. These
quantities were described in words, and were not yet given
the symbols dx, dt, and so forth, because we were con-
cerned that students have a pseudostructural understanding
of ‘‘dx’’ and ‘‘dt.’’ They have heard of ‘‘dx’’ in calculus
classes, but they may be sufficiently comfortable with it
that they will resist thinking about what it ‘‘means.’’ In the
problem statement, a fictitious student, Claire, suggested
that ‘‘a small change in velocity,’’ such as 61 mph�
60 mph ¼ 1 mph, may be relevant to the computation.
Carmen and Amber discussed this possibility:

Carmen: I think she’s also right with the velocity, be-
cause like a small change would make a pretty
big difference. So if she takes it at two differ-
ent points, I mean I think it would reduce the
amount of error.

Amber. Yeah. The only thing is, is that she’s . . . she’s
saying that v has to equal the change, cause if
you plugged in one mile per hour, it would be,
the equation (Amber is referring to the equation
x ¼ vt) would not work.

Carmen: Yeah. That would not work at all.

In this exchange, Carmen proposes an interpretation of
the phrase ‘‘small change in velocity,’’ suggesting that it
has to do with reducing the amount of error. Amber, how-
ever, directs the group’s attention to the numerical quantity,
1 mph, suggested by Claire as an example of a ‘‘change.’’
Neither has used the word ‘‘subtract’’ or a synonym, so
from this interaction we cannot discern whether Amber or
Carmen has made a connection with the idea of subtrac-
tion. Clearly, the idea of a ‘‘change in velocity’’ is not
trivial and merits some sense-making conversation. To
simply assume students understand the notation ‘‘dv’’
would have been premature.
After a long discussion, Amber and the other students

concluded that a small change in position should be
divided by a small change in time, and this would result

1In the United States, ‘‘AP’’ or ‘‘advanced placement’’ refers
to a challenging course for high school students. AP Physics B is
an advanced high school physics curriculum which is intended to
be at the same level as a college algebra-based physics course.
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in the velocity at a particular point in time. After they
resolved this puzzle, we gave names to physical quantities
such as dx and dt. Therefore, Amber was able to connect
the ‘‘macroscopic equation’’ x ¼ vt with the ‘‘infinitesi-
mal equation’’ dx ¼ vdt. The macroscopic equation is
applicable only when v is constant, or when x and t are
small. The infinitesimal equation specifies that x and t are
the quantities which can be made small in this case. We
feel that it is the student’s responsibility to learn how to
transform the macroscopic equation into an infinitesimal
equation using their understanding of physics, rather than
by memorizing which infinitesimals correspond to which
macroscopic equations. To deduce an infinitesimal equa-
tion, a student must use a mental model of the physical
situation to comprehend why dx ¼ vdt is appropriate, and
not, say, dx ¼ dvdt or dx ¼ tdv. At the end of this dis-
cussion, we presented a mini lecture emphasizing that in
physics dx ¼ vdt is just as valid as v ¼ dx=dt. We ad-
dressed the product layer but not the integration layer, as
we did not yet say that the dx’s should be added up.

1.b. We presented Amber, Carmen, and Matt with a
tabular representation depicting the velocity versus time
for a cart. The students were asked to move a physical cart
in a way that matched the numbers given in the table. They
also filled in the position values on the table, by summing
�x ¼ P

vidti. While they were able to perform the sum-
mation procedure, constructing the equation with sigma
notation and indices proved to be too difficult for them. We
explained the sigma notation in a mini lecture.

B. Lesson Two

The Appendix contains several problems from lesson 2.
One of them depicts a ‘‘sequence diagram,’’ which is our
term for a table depicting the physical variables associated
with a moving object. (The table in lesson 1.b also took the
form of a sequence diagram.) We speculate that this rep-
resentation might help students to associate the table rep-
resentation with motion, but we have no evidence for or

against this possibility. Note that in Tables II and III, the
‘‘diagram’’ row refers to an ordinary picturelike diagram,
not to a sequence diagram.
2.a.* This problem gave a table of velocity values for the

two-dimensional motion of a car and required Amber to
sum vxdt and vydt to fill in the x and y values in the table.

She then drew a picture of the motion and wrote an
equation that could be used to approximate �x and �y.
2.b.* This debate problem presented several peoples’

arguments about the correct equation for �x for the car’s
motion in (2.a). Amber was asked to explain which argu-
ments are correct.
2.c. Amber constructed a graph that has an area given by

the equation �x ¼ v1;xdt1 þ v2;xdt2 þ � � � that had been

developed in (2.b). She considered what happens to the
area if the time interval shrinks.
We had deliberately delayed asking Amber to associate

the sum with the graphical representation until this point,
because we believe that most of our students understand
this transition in terms of pseudo-objects. That is, they
remember that integrals have to do with sums and areas,
but do not recall why, and do not associate these layers with
the lower-level product layer.
2.d.* Amber was asked to tell a story (in writing) de-

scribing our progress from the macroscopic equation x ¼
vt to the area under a curve.
This was her first chance to summarize the layers of

integration, although we had not taught her about layers
explicitly. She gave a correct explanation, but mentioned
only a few representations. Amber did not discuss the infini-
tesimal equation dx ¼ vdt, mentioning only the macro-
scopic equation x ¼ vt. She recognized the importance of
the graph, that the area of each rectangle was of the
form vt, and that these quantities could be added up to
find the displacement. She also knew that the limit
should be taken as the time interval of the rectangle dt
went to zero. However, she did not draw a graph, table, or
diagram of the situation. In terms of our layers framework,
Amber connected (VR1 ! VR2 ! VR3 ! VR3�); that is,
she talked about a product and then a sum before
taking a limit. In the following, we have inserted ‘‘VR’’ to
indicateAmber’s layer transitions in termsof our framework:

TABLE III. Connections Amber made between representa-
tions. A ‘‘2’’ indicates that Amber made this connection twice
during her presentation. ‘‘N/A’’ indicates that this cell is not
applicable, as discussed in the caption for Table II.

Equation

or symbolic

Graph Experiential

(verbal)

Table

Diagram 4 0 2 0

Equation

or symbolic

N/A 0 2 0

Graph N/A N/A 0 0

Experiential

(verbal)

N/A N/A N/A 0

TABLE II. Connections Amber made between representations.
A ‘‘1’’ indicates that Amber made this connection once during
her presentation. ‘‘N/A’’ indicates that this cell is not applicable,
either because the cell would indicate an invalid connection
between a representation and itself, or because this same con-
nection appears in another cell in this table, and the information
is given in the other cell.

Equation

or symbolic

Graph Experiential

(verbal)

Table

Diagram 0 0 1 0

Equation

or symbolic

N/A 1 1 1

Graph N/A N/A 1 0

Experiential

(verbal)

N/A N/A N/A 1
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Amber: ‘‘. . . velocity� time elapsed can be represented
by the area of a rectangle (VR1 ! VR2), and
each rectangle can be added up to calculate a total
displacement (VR2 ! VR3). Then show that
the estimation gets more and more accurate as
the interval of time is shortened, eventually
to the theoretical value of dt (VR3 ! VR3�).’’

Storytelling and presentation are an important part of
assessing and building a student’s understanding. We
believe it is possible for the student to comprehend
the transition from each layer to the next, but to
resist understanding the process holistically. The story-
telling process requires the student to make those
connections.

2.e. This problem addressed the connection between
a concrete physical representation of motion and a
graphical representation. For this purpose, we used
McDermott’s tutorial on ‘‘representations of motion’’
[15].

C. Lesson Three

3.a.* Amber observed a physical system (a cart on a
track, attached to a string and weight threaded over a
pulley) and listed any physical quantities, such as kinetic
energy or displacement, that might be relevant to this
situation. Then she performed the experiment, dropping
the weight, and plotted quantities in a table. The purpose of
this exercise was to make her think about extracting a list of
physical quantities from a situation, which is a useful skill
for setting up integrals in the context of a physics problem
(see lesson 5.c). Amber had previously performed experi-
ments with this equipment as part of her mechanics course,
but we encouraged her to identify variables that may not
have been required by her lab. We also asked Amber a few
questions about infinitesimals, to remind her about what
she had learned so far.

3.b. At this point, Amber was given a substantial lecture
for the first time. Although lecture is often said to be an
inefficient way of transmitting information, Bransford and
Schwartz say that students can learn from a lecture if they
are prepared by learning about ‘‘contrasting cases’’ that
help them distinguish between the relevant concepts [16].
Our previous work helped Amber to distinguish between
dx and x. In the lecture, we discussed explicitly the differ-
ence between instantaneous or ‘‘point’’ quantities such as
v, x, and t (defined at a particular instant or point in time)
and ‘‘change’’ quantities such as dv, dx, and dt (defined as
the difference between point quantities over an interval.)
Amber’s experiment with the cart, in lesson 3.a, provided
the physical context for the lecture. The lecture was not
entirely one-sided, and included some discussion with the
student. Amber stated later that this lecture helped her to
consolidate her understanding of the concepts, although we
have no evidence of the lecture’s efficacy beyond her
assertion.

D. Lesson Four

4.a.* Amber gave a presentation about the layers of
integration for the proto-equation p ¼ Ft, in the context
of a person colliding with an airbag. ‘‘Proto-equation’’ is
our term; it indicates that this equation, like ‘‘x ¼ vt,’’ is
written in a deliberately vague form, requiring the student
to decide whether ‘‘p’’ should refer to an absolute momen-
tum, a change in momentum, or a very small change in
momentum. Amber prepared for the presentation with our
assistance, as we helped her resolve any questions she had
about the problem. She was often uncertain about how the
collision would behave as a physical system or how to
translate this behavior into a mental model. For instance, in
the passage below, Amber suggests that the force should be
constant over the course of the collision, but that an inte-
grand ‘‘has to be like a curve,’’ so she does not see how an
integral is necessary in this situation:

Amber: Can you give me a quick reminder?
Researcher: What do you want to be reminded of?
Amber: Just like describing the integral.
Researcher: Yes.
Amber: Cause it’s like force times a small change in time.
Researcher: Okay.
Amber: But . . . force is supposed to differ? I don’t know.

Cause it’s like, it has to be like a curve.
Researcher: Okay. Right.
Amber: And I don’t see how F changes . . .
After some time:
Amber: I mean like during the impact, the force is gonna

be the same, I should just multiply it by how
long the impact lasts.

It seems as though Amber cannot decide whether the
force from the airbag would change. These difficulties
show that skill with integration cannot be judged separately
from a student’s understanding of the relevant physics. The
very first layer, the ‘‘macroscopic quantity’’ layer (VR1),
often proves to be the most challenging—what physical
quantities are relevant in a problem and how do they
behave? We also helped Amber by specifying a list of
representations for her to use in the presentation.
Amber’s presentation lasted for seven minutes, during
which we interrupted only minimally and without giving
substantive advice. Figure 2 shows a sketch of the black-
board after Amber’s lesson 4 presentation.
In her presentation, Amber correctly made connections

between several representations. The pairs of representa-
tions are shown in Table II.
For instance, Amber relates experiential language with a

force versus time graph by saying, ‘‘. . . the force on the
airbag is gonna be slowly increasing. And then once the
impact ends it’s gonna start to decrease.’’
We counted Amber’s statements as ‘‘connections’’ only

if we judged them to be physically correct. In addition, if
Amber related the same ideas multiple times using the
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same representations, we counted only a single connection.
A discussion about an equation such as dF ¼ pdt was
counted as one connection, even though the equation con-
tains multiple physical quantities.

Table II does not capture the structure of layers that
Amber discussed, nor does it show the way in which she
connected clusters of more than two ideas. For instance, in
this lesson, Amber connected the infinitesimal quantity
(VR1*), product (VR2*), and integral (VR3*) layers.
The excerpt below is annotated with (VR1*), (VR2*),
and (VR3*) accordingly. Sometimes Amber mentions a
process that can connect two objects on different layers.
For instance, quantities can be multiplied to obtain a
product, and products can be summed to obtain an integral.
To illustrate these processes, we indicate the two layers and
connect them by an arrow, like (VR1� ! VR2�).

Amber: For the, so an infinitesimal quantity, we will be
looking at it in terms of, so, small change so that’d
be dp (VR2*) equal toF times (VR1� ! VR2�)
really small change in time. (VR1*) [Writes:
‘‘dP ¼ F � dT’’] So you are looking at it like
this, so if you make a diagram [draws axes],
and then, so the force on the airbag is gonna be
slowly increasing. And then once the impact ends
it’s gonna start to decrease. [Draws (unlabeled)
force vs time plot, with force increasing then
decreasing.] So to find this really small change
in time (VR1*), you will still be taking the areas
(VR2*) except you are just gonna have to—
[Draws a thin column rectangle on the force vs
time plot] (VR2*) so hypothetically to find the
most exact, this is gonna be avery small change in
time (VR1*) [indicates bottom of column], and
this is still gonna be equal to the force [indicates
top of column]. So you take dt (VR1*) times

(VR1� ! VR2�) whatever the height is at this
point. So to add up all those quantities (VR2� !
VR3�) you’d end up with the equation [Writes’’
P ¼’’], so the integral (VR3*) is taking the sum
of all of these little quantities (VR2� ! VR3�)
[Points to graph]. (VR3*) So we end up with
integral of F times dt. [Finishes writing: P ¼R
FdT] (VR3*)

Notice the gestures that connect the product idea to the
thin rectangle, the pronoun references to previous ideas
(‘‘those quantities,’’ ‘‘this really small change in time’’),
and the use of at least some experiential language to connect
with a mental model of the physical situation (‘‘impact’’).
At some points in her presentations, Amber connected a

single aspect of the problem using three different represen-
tations. In the passage quoted, Amber connects three rep-
resentations indirectly, by tying a verbal description and a
symbolic expression to the same graph. She states that
‘‘once the impact ends [the force is] gonna start to de-
crease,’’ indicating a force versus time graph. She later
attaches the symbolic expression ‘‘dt’’ to the same graph.
This chain of representations might be represented as a
time-ordered sequence: verbal ! graphical ! symbolic.
However, Amber’s first connection (increasing and then
decreasing force) pertains to a different aspect of the graph
than Amber’s second connection (a small amount of time).
This is a nuance that the time-ordered sequence cannot
portray. At this point in the sequence of lessons, we transi-
tioned to considering spatial integrals.
*4.b. Amber thought about how she would communicate

about the quality of dots on a line by which they could be
closer together or farther apart. She came upwith the idea of
counting the distance between dots, as well as the number
density. She learned the macroscopic equation N ¼ �NL,
with �N representing the number density, which was to be a
model for mass densities later. Density is crucial in many
spatial integrals, and we wanted to consolidate the idea.
4.c. We discussed a hanging slinky, in which the rings

are farther apart at the top and closer together at the
bottom. The number density of the rings can be measured,
but the macroscopic definition �N ¼ N=L is meaningful
only when the length L is larger than the distance between
rings and smaller than the length of the slinky.

E. Lesson Five

5.a. In a spatial integral, infinitesimal quantities such as
dx and dm are ‘‘amounts’’ rather than ‘‘change quantities.’’
That is, dm is best thought of as a small amount of mass,
rather than a small change in a ‘‘mass variable’’ m (what-
ever that would mean). This distinction is illustrated by the
fact that dx cannot be negative in a spatial context, but can
be negative in a kinematics context. We gave several
examples to talk about these issues.
5.b. Similar to (3.a), Amber thought about the physical

quantities that could be associated with the slinky.

FIG. 2. Sketch of the blackboard after Amber’s lesson 4 pre-
sentation. (Our videotaped screen shot would be difficult to
read.) Amber uses both ‘‘T’’ and ‘‘t’’ to represent time.
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5.c. Amber observed a rotating trough of water on a
turntable, in which the rotation led the water to push
toward the edges of the container, forming the shape of a
parabola. A drawing of the water in the trough is shown in
Fig. 3, as well as in Amber’s sketch, Fig. 4.

We helped Amber to deduce the moment of inertia of
this system. As mentioned in lesson 3.a, Amber needed to
know which physical quantities might be relevant in the
situation, since no variables, apart from moment of inertia,
were specified in the problem. She recognized on her own
that density and volume were important, but needed more
help setting up the spatial coordinates, y / x2. After solv-
ing the problem, Amber gave a presentation at the black-
board about the layers involved in this process (see Fig. 4).
This time, we did not assist her by giving a list of the
representations she should use.

In her presentation for lesson five, Amber made the
connections shown in Table III.

Amber was able to talk about the infinitesimal equa-
tion for volume in a confident way, combining verbal
description, equations, and diagrams. In the following
passage, she has drawn a diagram of the trough, as shown
in Fig. 4.

Amber: Okay, so, after youfind that, youneed tofind some
way to get themass of the small section. And so to
do that you have, you know the equation ‘‘density
equals mass over volume’’ [writes � ¼ m=V].
So mass equals density times volume [writes
m ¼ �V]. So the density of the water is gonna
be the same throughout, but the volume will
change based on where you are looking at on
the graph, because the radius is gonna change
depending on how far out you go. [Indicates
points 1=3, 2=3, and 3=3 of the way out from the
center on the picture of the trough of water.] So if
you take a small section of this [draws two very
close together vertical lines, this time on the left
half of the trough] to find density you have sort of
[draws a tall 3D rectangular box] like a small
cyl. . . like a small cubic rectangle.

Amber went on to assign values or variables to each of
the three dimensions of the ‘‘cubic rectangle,’’ constructing
an infinitesimal equation (‘‘dV ¼ yDdr’’) for the volume.

F. Lesson Six

6.a.* One way to test knowledge about integration would
be to assign a student to set up integrals in a novel context.
We attempted this only in lesson six, using a previously
tested set of problems. We assigned a set of problems that
we had used for another research project [13], concerning
work and spatial integrals. These problems scaffolded the
construction of work, mass, and moment of inertia inte-
grals, and then we asked the student to set up center-of-
mass and torque integrals.
We found that Amber was able to set up a center-of-mass

integral, which she had never been asked to consider
before. In our previous work, only a small number of
students could set up this integral, and most of those who
did required multiple hints or else showed signs that they
may have learned about this integral before. Amber did not
require any hints during the solution process itself.
The center-of-mass problemwas a post-test, which came

with practice problems about work and moment of inertia
that Amber (and the past students) solved in preparation for
the post-test. Amber asked more insightful questions about
the practice problems than the students in the previous
study, requiring and receiving more help. We believe that
Amber was able to ask the right questions because of our
lessons, but also because there were no other students
competing for the researcher’s attention. Certainly,
Amber’s questions were thoughtful and to the point, in-
dicating that she was thinking in the right direction already.
For instance, after learning that the mass is

R
�dx and

moment of inertia
R
�x2dx, she wanted to know why mo-

ment of inertia could not be found by ðR�dxÞR2. Although

her intuition was wrong in this case, this kind of ‘‘why’’
question was rare or absent among students who had not
participated in our series of lessons.

FIG. 3. A diagram of the trough. The water in the trough has a
parabolic shape, y ¼ ar2, and in the third dimension (into or out
of the page), the trough has a constant depth D ¼ 0:6 cm. The
trough is sitting on a turntable, which is rotating.

FIG. 4. Sketch of the blackboard after Amber’s lesson 5 pre-
sentation.
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6.b. We briefly went over the proof, using infinitesimals,
that kinetic energy is 1

2mv2, by integrating the force

over dx.

G. Lesson Seven

7.a. We discussed a problem about the hydrostatic force
and torque exerted by a body of water on a hinged door.
The door closes a channel, as shown in Fig. 5, so that the
water exerts a torque about the hinge.

Amber was asked to recall the derivations of the infini-
tesimal equations for moment of inertia and torque. The
instructor helped Amber to work out the solution to the
problem and then gave a presentation about the force part
of the problem. Then Amber presented the (more difficult)
torque portion.

This lesson differed from all of the others in that Amber
watched the researcher give a presentation prior to Amber’s
own presentation. It is instructive to compare Amber’s pre-
sentation to the researcher’s presentation. Both the re-
searcher and Amber used the product layer (VR2*) in the
equation representation, but did not explicitly mention sum-
mation. Both drew geometric quantities on the diagram,
such as width and height segments, to represent the infini-
tesimal area dA ¼ wdx, although Amber wrote only a low-
ercase ‘‘a’’ to represent this area, with no ‘‘d,’’ whereas the
researcher wrote ‘‘dA.’’ The researcher also related pressure
and force to the diagram, by drawing circles to represent
small regions on which the force was acting, gesturing
vertically to indicate that the pressure varied with height,
and gesturing horizontally to say that it did not vary with
width. Amber did not spontaneously relate pressure or force
to the diagram. When we asked Amber the right question,
after her presentationwas over, she did represent the varying
pressure by drawing it on the diagram. This happened when
we asked her why the dam should be cut into horizontal
strips and not vertical strips, and she responded, ‘‘So the
reason you want to divide it up horizontally, if you have a
rectangle like this [vertical rectangle], it’s gonna have a
different pressure at each height [draws series of dashes to
indicate the varying pressure], so it will not work.’’ This
incident exemplifies the kind of information we can gain by
asking questions after a presentation.

VI. RESULTS AND DISCUSSION

As evidenced by her performance in presentation and
storytelling problems, Amber’s proficiency with layers and
representations was substantial in the later lessons.
Tables II and III indicate that Amber connected different

representations, weaving them together into a coherent
story. In lesson five, she connected the diagram, equation,
and experiential representations into a single unified argu-
ment, and she did this without any hints about the correct
representations to use.
Another way to assess Amber’s skill is to notice the

aspects of her presentations that were most innovative and
least like the representations she had recently learned about.
For instance, her depiction of a narrow box-shaped volume
element in lesson five was unlike anything that she had seen
in these lessons; she may have transferred her knowledge
from calculus to the physics context. In lesson four, Amber
drew graphs not only of the integrand FðtÞ, but also of the
integral function (VR4*) pðtÞ, which she had not previously
been asked to do.She also explicitlywrote downquantitative
comparisons between physical quantities as time pro-
gressed, stating that at successive times 1 and 2, F1 <F2

and v1 > v2. She had not been instructed to write symbolic
comparisons in connection with the table representation.
Amber’s behavior in lesson six also provided evidence of

improved understanding. She approached a quantitative
integration problem in a different way than other students
we hadworked with, asking sense-making questions during
the scaffolding process and then solving the center-of-mass
problem without too much difficulty. It is difficult to com-
pare her behavior with that of past students, since her
lessons were one on one and the other students worked in
groups. However, her ability to ask insightful questions and
to get the right answer was a positive improvement relative
to past students working on these problems.
Both Amber’s essay in lesson two and her presentation in

lesson four navigate the layers of integration, but they
achieve this goal in slightly different ways. In lesson two,
Amber imagines a limit being taken after finitely many
quantities are summed. In lesson four, she talks about a
sum of small quantities and does not mention a limit. The
former might be called the ‘‘limit of the sum’’ perspective,
or (VR1 ! VR2 ! VR3 ! VR3�), and the latter is the
‘‘sum of small quantities’’ perspective, or (VR1� !
VR2� ! VR3�). Our framework permits either sequence,
whereas other authors privilege the ‘‘limit of the sum’’
perspective. We feel that the ‘‘sum of small quantities’’
perspective is acceptable and sufficient in a physics class,
if not in amath class, and deserves a place in our framework.
At the end of the sequence of lessons, we asked Amber

which exercises had been most helpful to her. She cited the
initial debate problem about ‘‘dx ¼ vdt.’’ She enjoyed
McDermott’s representations of motion tutorial, as well
as the one-hour review lecture in lesson three. The presen-
tation in lesson four was confusing for her since it was
unclear to her what we wanted her to do (although in our
opinion she did a good job of interpreting our intent never-
theless.) The slinky exercise in lessons 4.b and 4.c helped
her to make sense of the idea of density. The distinction
between the amount ‘‘dx’’ and the change ‘‘dx’’ was

FIG. 5. Hinged door and channel for lesson 7.
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beneficial, as well as an example we gave about finding the
moment of inertia of a rod rotating about an axis parallel to
itself. A torque debate problem in lesson six was helpful
even though it was difficult and she did not find the right
answer. Finally, the hydrostatic dam problem in lesson
seven was useful in consolidating ideas about torque,
pressure, and some concepts from her calculus course.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have discussed the significance of layers
and representations in a sequence of lessons about setting
up integrals. A student cannot be said to fully understand
integration in a physics context unless she can make use of
several layers, such as the quantity, product, and sum layers.
Building an integral requires being aware of the relevant
physical quantities, both macroscopic and infinitesimal,
constructing the appropriate product from these quantities,
and adding a sequence of products to arrive at a sum or
integral. However, awareness of these layers is not enough.
A student needs to know what is being added up and why,
not only the layer structure of the process. Thus, the student
must be able to relate each layer of the integral to several
different representations, including graphical, verbal, equa-
tion, and concrete physical representations.

Our lessons helped an introductory mechanics student,
‘‘Amber,’’ to become aware of these layers and represen-
tations. We built on Amber’s experience with the physical
world, while avoiding premature connections with her
calculus knowledge. In order to test Amber’s understand-
ing, we asked her to make presentations about integration
at the blackboard. We were able to judge her presentations
by noticing when she linked multiple representations and
layers in a fluid way.

One might imagine assessing knowledge about integra-
tion using quantitative problems, perhaps by asking a
student to set up an integral in an unfamiliar situation.
However, we expect that most introductory mechanics
students will require some help to set up unfamiliar inte-
grals, even if they have a fair amount of experience with
multiple layers and representations. A more appropriate
assessment, which can reveal degrees of understanding, is
to ask the student to make a presentation about a more
familiar topic. In this situation, students have a chance to
display some degree of understanding, even if they cannot
solve unfamiliar integral problems.

Although oral presentations are an informative assess-
ment tool, one might ask whether they are practical in the
context of a large lecture course. In a large course, instruc-
tors do not have time to observe presentations from every
student, handle the logistics of a presentation schedule, and
grade every presentation. We can think of a few solutions
to these challenges. First, the scheduling logistics become
easier if students give presentations not to a live audience,
but to a recording device. For instance, a ‘‘Smartpen’’
audio pen recorder is capable of storing both speech and

writing. Second, teaching assistants or learning assistants
could be trained to observe and grade presentations. Third,
undergraduates themselves could grade their own presen-
tations or others’ presentations. Fourth, the instructor could
gauge the students’ collective understanding by viewing
presentations from a small sample of individuals. We have
not established the viability of these schemes, but we hope
to investigate these possibilities in the future.
Another task for future research would be to perform a

controlled study about the effectiveness of this kind of
intervention. When designing such a study, one important
question is what the control group will be like. Because
calculus-based mechanics courses can vary dramatically
with respect to their treatment of integration, there is a real
dilemma about whether the control group should receive
instruction in a traditional curriculum (and if so, whose
curriculum?) or a curriculum designed expressly for the
purpose of helping students to make presentations about
integration. (And if so, designed by whom?). One must
also decide whether the control group should experience a
traditional teaching method such as lecture, or a nontradi-
tional method. Still, a controlled study could provide
quantitative evidence that our intervention played a role
in generating students’ understanding.
Although Amber’s experience should not be taken as

typical of all students, her increasing skill with representa-
tions illustrates the type of learning that is possible for at
least some first-semester calculus students, as well as the
value of presentation as an assessment tool. In the future,
we hope to test these ideas with a larger body of students
enrolled in the same introductory mechanics course.
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APPENDIX

This Appendix contains a selection of the problems from
our seven lessons. Statements marked ‘‘note to the reader’’
did not appear in the original lesson; they are clarifications
for the benefit of the readers of this paper.

Lesson 1.a

Note to the reader—The three students were instructed
to discuss and write down their thoughts about these ques-
tions, even if they were not certain about their answers.
Question 1: ‘‘A malfunctioning speedometer’’
**P1. Your iPhone has a ‘‘speedometer’’ app that prints

on the screen how fast you are moving, in miles per hour.
You are driving with your friends Dan, Claire, and Paul on a
long road trip, and comparing the iPhonemeasurement with
the car’s actual speedometer. And they are different! One of
them says 65 mph, and the other says 75 mph. You have the
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trip planned out to get to Saint Louis at a certain time, so
you’d like to know the speed. But you cannot trust either the
car or the app, because they do not agree.What else can you
do to help figure out how fast the car is going?

Question 2: ‘‘A debate’’
When the speedometer malfunctions, you tell your

friends: ‘‘Why don’t we do this using physics, using the
equation x ¼ vt?’’ Dan wants to know, ‘‘But what num-
bers should we use for x, v, and t?’’ Your friends have
several different ideas about how to do this. Carefully read
and discuss what each of them has to say. They may be
partly right and partly wrong.

Here’s what Dan has to say:

The place where x starts has to be the starting point of our
trip. At the beginning of the trip, the car’s main odometer
read 270 miles. (The car is very new.) Now it says
412 miles. So we have gone 412� 270 ¼ 142 miles,
and that is x, our change in position relative to the start.

In physics, everything is relative. What ‘‘velocity’’ is
supposed to mean is ‘‘velocity relative to the start of the
trip.’’ So v is our change in velocity relative to the start. I
guess the trip really ‘‘started’’ when we got onto the
highway, so vmeans the difference between our velocity
now, and our velocity at that time, vnow � vstart.

And t is our change in time relative to the start. Since we
started 2 hours ago, that is the time, t, in the equation.

Here’s what Claire has to say:

I think the x should be a small change in position. So we
should pick two points: one now, and one a short ways
ahead. Maybe in 1 mile. Then x is one mile.

The equation is about small changes. Sov should be a small
change in velocity. v will be how much our velocity
changed between the two points. If we were going
60 mph, and later we are going 61 mph, then v will be
that small difference, 1 mph.

And it seems like t should be a small change in time,
because like I said the equation is about small changes.
So twill be how much the time changes between the two
points. If we pick a point 0.1 hours ahead, then t will be
the small difference, 0.1 hours.

Here’s what Paul has to say:

Obviously, the x is the odometer reading of our car,
which is our position at this point. The main odometer
reads 412 miles, which is our position, x.

Clearly, the v is our velocity at this point, in miles per
hour. If the speedometer were not broken, then whatever
it says would be v. It’s probably either 65 mph or
75 mph, depending on whether you trust the speedome-
ter or the iPhone.

And anyone can see that t is our time at this point, in
hours. Since it is 12:30 pm, and 30 minutes is half an
hour, the answer is that t ¼ 12:5 hours.
** P2.a. What parts are right and what parts are wrong,

and how do you know?

** P2.b. In your own words, what pattern connects the
three different things that Dan says? How about the three
things Claire says? How about Paul?

** P2.c. How would you convince your three friends
about the right answer?

Question 3: ‘‘A word problem’’ [we skipped this ques-
tion, which asked students to construct a word problem]
Question 4: ‘‘Some symbols’’
Let’s find some symbols to talk in Paul’s way, Dan’s

way, and Claire’s way. Of course we could write vPaul,
vDan, vClaire to make clear whose velocity we are
talking about. But let’s find a quicker way of writing it.
Suppose each of them wants to talk about the velocity, v.
Then:
Dan’s symbol is�, so ‘‘�v.’’ This triangle is really a letter

of the Greek alphabet, an uppercase ‘‘Delta.’’ (Lowercase
‘‘delta’’ is written �, you will not see it in this lesson.)
Claire’s symbol is d, so ‘‘dv.’’
Paul’s symbol is no special symbol, just ‘‘v.’’
Remember, Claire likes small changes, or you might say

‘‘differences.’’ That’s why her letter is a small ‘‘d,’’ for
‘‘differences.’’ Dan likes big changes. That’s why his letter
is big Delta for big ‘‘Differences.’’ So we say that

Dan is talking about �x, �v, and �t.
Claire is talking about dx, dv, and dt.
Paul is talking about x, v, and t.

P4. Rewrite the equation ‘‘x ¼ vt’’ in the correct form
used to find the velocity of your car, from question 2.
This is the ‘‘equation for infinitesimal motion.’’ It’s

important that you remember what you did in question 2
to help you get to this equation. Do not just memorize the
equation itself.
Question 5: [we skipped this question, which was about

average velocity]

Lesson 2.a, 2.b

Sequence diagram for the motion of a car
(Figure 6 was inserted at this point in lesson 2.)
1. Draw a picture of the motion of the car. Describe in

words what it might be doing?
2. Write down an equation that you could use to ap-

proximate:
(a) The horizontal displacement from frame #1 to #6?

(�x ¼ x6 � x1)
(b) The vertical displacement from frame #1 to #6?

(�y ¼ y6 � y1)
3. These people have different opinions about the equa-

tion for (2.a).
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Which ones, if any, are right? (like ‘‘2þ 2 ¼ 4’’)
Which ones, if any, are wrong? (like ‘‘2þ 2 ¼ 5’’)
Which ones, if any, are meaningless? (like ‘‘2þ��2¼5’’)
Calculate the first term of each, just to show how it

would be done. (Of course, if the equation is meaningless,
this may not be possible.)

** How would you convince these people that their
equations are wrong or meaningless?

(a) Charles: ‘‘The equation is �x � vtotalttotal. This is a
quick way of summarizing the whole series of
numbers.’’

(b) Sandy: ‘‘The equation is �x � v1;xdt1 þ v2;xdt2 þ
v3;xdt3 þ v4;xdt4 þ v5;xdt5. We are adding up the

little displacements from the different small
amounts of time.’’

(c) Jackie: ‘‘The equation is �x � t1dv1;x þ t2dv2;x þ
t3dv3;x þ t4dv4;x þ t5dv5;x. This is basically the

same as Sandy’s equation, except it emphasizes the
changing velocity.’’

(d) Matt: ‘‘The equation is �x � v1dt1 þ v2dt2 þ
v3dt3 þ v4dt4 þ v5dt5. So, ‘‘v1’’ is not in the
sequence diagram, but what I mean is the speed in
frame 1, which is the magnitude of the velocity

vector. That’s v1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v1;x

2 þ v1;y
2

q
. You have to

count the whole speed, not just a component.’’

Lesson 2.d

Tell the story
Question: In the last two labs, we have done a lot. We

started with an equation x ¼ vt (a week ago), and we

ended up finding displacement as an integral or an area
under a curve. Write about how this happened. What
logical steps did we follow to make this connection?
How did we figure it out? How would you explain to a
classmate who had not taken these labs, and wants to know
why the displacement is �x ¼ R

vdt?
Note to the reader—The image of the car was obtained

from Ref. [17].

Lesson 3.a

(1) List some physical variables that might be of inter-
est during the motion of the glider. A physical
variable is any kind of number or variable that
physicists might care about, that is related to this
experiment.

(2) Perform the experiment, and fill in the values of the
variables into a table. Then, write four adjacent
rows of the table into a sequence diagram.

A discussion about infinitesimal equations.—This is an
infinitesimal equation: dx ¼ vdt.
Write down some things we have learned about it so far.

Can you say anything about: The difference between ‘‘dx’’,
‘‘�x’’, and ‘‘x’’?
How ‘‘dx ¼ vdt’’ is related to integrals?
How ‘‘dx ¼ vdt’’ is related to sequence diagrams?
‘‘x ¼ vt’’ was an equation that we turned into the in-

finitesimal equation, ‘‘dx ¼ vdt.’’ Do you know any other
equations that we could turn into infinitesimal equations?
What integrals could we make out of them? Write some
ideas here.

FIG. 6. ‘‘Sequence diagram’’ of a car used in lesson 2.
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Lesson 4.a

Impulse
(Figure 7 was inserted at this point in lesson 4.)
Your engineering firm is designing an air bag that is

supposed to provide force that will slow and stop a pas-
senger in a moving car. In relation with this problem, you
are discussing this equation with your boss:

(Figure 8 was inserted at this point in lesson 4.)
Your boss took a physics course once, but has spent most

of her time in managerial work and less in engineering over
her last five years in the firm. So she remembers and
believes this equation, but does not remember precisely
how to use it, and is not convinced that it is related to
integrals or areas under curves. You will give a presenta-
tion at the blackboard about this equation. Take some time
to write down your thoughts. (Ask the instructor for help
whenever you need it.)

Note to the reader—We explicitly instructed Amber to
discuss the following in her presentation: sequence
diagrams, integrals, areas under curves, point quantities

(like Paul’s idea in lesson 1), infinitesimal quantities (like
Claire’s idea in lesson 1), and interval quantities (like
Dan’s idea in lesson 1).
Another note to the reader.—The image of the airbag

was obtained from Ref. [18].

Lesson 6.a

Center-of-mass. For a system of n point particles located
on the x axis at positions x1; x2; x3 . . . , the center-of-mass is

Xcm ¼ m1x1þm2x2þm3x3þ...
M , where M ¼ m1 þm2 þm3 þ

� � � is the total mass.
(Figure 9 was inserted at this point in lesson 6.)
Now, imagine a rodwith a changing linear density�ðxÞ¼

x3þ2x2þ2, where x is in meters and �ðxÞ is in kg=m. The
length of the rod is 2 meters. The linear density � of a rod is
defined as its mass divided by its length. If the linear density
�ðxÞ is changing as a function of x, it means that a small
segment of the rod near point x has density �ðxÞ.
(Figure 10 was inserted at this point in lesson 6.)
Find the center-of-mass of the rod.
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