Future Elementary Teachers' Epistemological Beliefs & Views About Nature of Science Before & After a 'Reformed' Conceptual Physics Course

Charles B. Mamolo & N. Sanjay Rebello
Kansas State University

Research Questions

What are future elementary teacher's epistemic beliefs about the physical sciences?
- How do these epistemic beliefs change after they complete a 'reformed' physical science course?

What are these views about the nature of science?
- How do these views change after they complete a 'reformed' physical science course?

Research Participants

- Elementary Education Majors
 - N = 108
 - 95% Women
- Enrolled in a Conceptual Physics Course
 - Almost no students have High School Physics

Course Pedagogy

- Learning Cycle
 1. **Exploration**
 - Lecture on Wednesday.
 - Address Exploration
 - Use peer instruction
 - Introduce concepts
 2. **Concept Introduction**
 - Monday-Wednesday
 - Stations in Activity Center
 - Hands-on with guiding questions on worksheet.
 3. **Application**
 - Wednesday-Friday
 - Hands-on experiment stations in Activity Center
 - Apply concepts learned in class on Wednesday

Data Sources

Pre-Post Comparisons of scores on...
- Epistemic Beliefs in Physical Sciences (EBAPS)
 - A 30-question multiple-choice questionnaire
- Views about Nature of Science (VNOS)
 - A seven-question open-ended questionnaire

EBAPS Dimensions

- Structure of Knowledge
 - Coherent vs. Pieces
- Nature of Learning
 - Propagated from authority vs. Self constructed
- Real-Life Applicability
 - Applicable vs. Non-applicable to the real world
- Evolving Knowledge
 - Knowledge changes with time
- Source of Ability to Learn
 - Innate vs. Acquired
EBAPS Results

- **Structure of Knowledge**
- **Nature of Learning**
- **Real-life Applicability**
- **Evolving Knowledge**
- **Source of Ability to Learn**

VNOS Dimensions

- **Empirical Nature of Scientific Knowledge**
 - Observations are used in making scientific claims.
- **Inference & Theoretical Entities in Science**
 - Scientific models are inferential in nature.
- **Nature of Scientific Theories & Laws**
 - Theories provide a framework for examining evidence.
 - Laws may change.
- **Creativity & Subjectivity in Science**
 - Creativity permeates science, no single scientific process.
 - Science is a mixture of objective & subjective components.
- **Social & Cultural Influences**
 - Science is a culture in itself and is influenced by society.

VNOS Results

- **Empirical Nature of Science**
- **Inferential Nature of Models**
- **Scientific Theories & Laws**
- **Creativity & Subjectivity**
- **Social & Cultural Influences**

Conclusions

Future elementary teachers’...

- Epistemic beliefs (as measured by EBAPS) do not change significantly after this course. Only change in “Real-Life Applicability” dimension
- Views of Nature of Science (as measured by VNOS) do not change significantly after this course. Only change in “Inferential Nature of Models” dimension

Limitations of Study

Inherent limitations in the instruments

- **EBAPS:**
 - Teasing Epistemology vs. Expectations
 - Teasing Beliefs vs. Goals
 - Inferring students’ sophistication
 - Inviting stock responses from students
- **VNOS:**
 - Validity of interpreting open-ended responses
 - Inter-rater reliability (low ~70%)}

Implications

A single reformed science course, even one that uses research-based pedagogy, may not significantly alter students’ views or epistemic beliefs about science.

These issues may need to be explicitly addressed over the longer term in a students’ educational experience.

1 Elby & Hammer (2002)