Applying Knowledge in New Contexts: A Comparison of Pre- and Post-Instruction Students
Dyan L. McBride1 and Dean A. Zollman
Kansas State University, Manhattan KS, 66502
1Present Address: Mercyhurst College, Erie PA, 16506

\section*{Description of Study}
- Knowledge construction in a new context
 - Wavefront aberrometry
 - Examine the types of resources students use
 - Two participant groups
 - Pre-instruction students: enrolled in first-semester of introductory-level algebra-based
 - No formal light/optics instruction
 - Post-instruction students: enrolled in the second semester of introductory-level algebra-based
 - Covered light, mirrors, lenses, optics of near- and farsightedness
 - Recitations, textbook homework problems, and an exam

\section*{Research Question}
What are the differences, if any, in the resources used by students who are pre-instruction in optics and those who are post-instruction in optics and in the ways in which the two groups use prior knowledge when constructing an understanding of the new context?

\section*{Methodology}
- Learning/Teaching Interviews1
 - Algebra-based Physics Course
 - Pre-Instruction in light/optics
 - Post-Instruction in light/optics
- Phenomenographic Approach2
- Resource Analysis3
 - Construction of knowledge in new context

\section*{Basic Knowledge about Vision}
- Similar conceptions about vision and the human eye
 - Eye is single-lens system, lens and screen (retina)
- Vision defects: less than half could explain
 - Result from a defect in the lens, not shape of eye

\section*{Activated Resources}
- The shape of a lens affects the image focus
- Lenses divide up the light
- Light entering a lens differently will focus differently
- The distance light travels determines the angle
- Use of physics equations

\section*{Knowledge Construction Approach}
- Willingness to discuss aberrometry varied
 - Pre-instruction: willing to answer questions about eye, hesitant and reserved with aberrometer
 - Epistemic state may be ‘knowledge is constructed’ or ‘knowledge is freely created’4
 - Post-instruction: more willing to discuss, predict, explain, etc
 - Epistemic state may be ‘knowledge is viewed as stuff that is propagated from authority’4

\section*{Necessary Scaffolding}
- Pre-instruction students
 - Required scaffolding in every aspect
 - Exploration of converging/diverging lenses
 - Manipulation of models of the human eye
 - Had to be encouraged to apply new information
 - Post-instruction students
 - Approached activities as verifications of their prior knowledge
 - Readily applied their knowledge
 - Scaffolding was of much larger step-size than was required for the pre-instruction students
 - Drawing of light rays through a lens in order for them to think about what happened to the focal point

\section*{Conclusions}
- Students have a wide range of knowledge about the human eye, its functions, and vision defects
 - Students also have a significant body of resources that they used
 - Pre-instruction students felt unprepared to construct an understanding of wavefront aberrometry but were able to do so with scaffolding
 - The students’ hesitance with the material suggests that they did not realize that understanding wavefront aberrometry was within their range of capability – their Zone of Proximal Development (ZPD)5
 - Wavefront aberrometry was well within the ZPD of students with some basic knowledge of light and optics
 - Able to construct their knowledge more independently and with less scaffolding
 - While traditional instruction provided students with the confidence to use their knowledge of optics in this new context, it also hindered their use of equally-productive resources from everyday experiences.

\section*{References}

Supported by NSF Grant DUE 04-26754