Thinking about Representational Fluency in Terms of Epistemic Games

Epistemic Game (ĕp 'ǐ-stē'mĭk 'gām) or E-Game noun:

1. The set of rules and strategies that guide inquiry
(Collins \& Ferguson, 1993) Normative
2. A coherent activity that uses particular kinds of knowledge and processes to create knowledge or solve a problem. (Tuminaro \& Redish, 2007) Ethnographic

Research Questions

1. Are epistemic games a useful way to think about students' use of representations?
2. What moves from the Graphical Analysis E -Game does this student use? Which moves are difficult?
3. How do the hints given by the instructor help the student proceed with the E-Game?

E-Game: Graphical Analysis

Target Epistemic Form Graph

Knowledge Base

Reasoning resources Lexical/symbolic resources Formal computational resources Conceptual resources

Entry Condition

 When information is presented in a graph or a graph is generated
Constraints

Info cannot be changed on an existing graph

Moves

Interpret lexical information (legend, axes,
titles, units)
Create a story
Read-out values
Compare data sets
Identify features
Extrapolate/Interpolate Make an estimation
Calculate slope Calculate area Translate to a new representation

Elizabeth Gire, Dong-Hai Nguyen 8
N. Sanjay Rebello

Kansas State University

Physics Problem
Physics Problem
A 0.1 kg bullet is loaded into a gun (muzzle length 0.5 m) compressing
a spring as shown. The gun is then tilted at an angle of 30° and fired a spring as shown. The gun is then tilted at an angle of 30° and fired.

The only information you are given about the gun is that the barrel of
the gun is frictionless and when the gun is held horizontal the net the gun is frictionless and when the gun is held horizontal, the net force $F(N)$ exerted on a bullet by the spring as it leaves the fully
compressed position varies as a function of its position $\times(\mathrm{m})$ in the barrel as shown in the graph below.
What is the muzzle velocity of the bullet as it leaves the gun, when the
gun is fired at the 30° angle as shown above?

After CC has solved the problem correctly, the interviewer asks her to reflect on the problem.
cC: This one [problem] was more involved because you weren't given all of the variables in the question. Definitely the trickiest part is using both to find your x and to find your force which then you could find your k.
The interviewer further probes whether the student can solve the problem without calculating the spring constant. CC specullates that she might perform a substitution of $\mathrm{k}=-\mathrm{F} / \mathrm{x}$ into $\mathrm{U}_{\mathrm{s}}=1 / 2 \mathrm{kx}$.
Int: OK. In the other problem you cannot do it but in this problem you can d because you have the graph. Look at the graph and see how you can
 Ok, you can find x from it easily, but if we say that your spris
compressed 0.2 meters and you have 1000N...(trails off)
Int: So the potential energy of the spring is equal to the work done by the spring force. How do you calculate the work done by a force when you have the graph of force distance?

Create a Story
 Student acknowledges that
 using the connection between the graph and the

Begins Graphical Analys E-Game
Interviewer redirects the student
graph.

Create a Story

Student tries to invoke the meaning of the graph but this doesn't lead to a

CC: Um, is it the integral of it? The area underneath? Or...I'm not sure. Cause your work equal force times distance (write down an equation). And you know the force
Int: Do you know the force in this case?
CC: Hmmm...would it be 1000 ? Or
Int: Actually, in this case, you have a bunch of values of force. Because you Actually, in this case, you have a bunch of values of force. Because you
see (points to the graph) as x changes, force changes also. So you don't know what value of force to plug into that equation. So you cannot do it that way. And there is another way to calculate the work done by the force when you have a graph of the force vs. distance. What is that? You have talked about it already.
CC: I have?
Int: You have. When I asked you how the work was related to the graph
CC: Is it the integral, the area underneath it?
Int: Yes. That's it! Ok, so the work done by the force on the graph is the area underneath the graph (points to the graph). So which is the area in this

For this one I would use geometry because it's a straight line instead of curve, so.
Int: So, could you point out which area you're going to calculate?
CC: Yeah (shades in the graph). I need to calculate this area here. First I would find the area for, well, 'I'd just it two.
CC calculates the area under the curve. The interviewer remarks that the value is the same as she had previously calculated. Both the interviewer and CC acknowledge that this method is easier/quicker. The interviewer know calculus and understand what the graph means.

Discussion

- The student readily makes moves Interpret Lexical Info and Read-Out Value and Calculate Area once she realizes this will be a productive move. She has trouble with Create A Story
- Interviewer uses Read-Out Values to help student participate in Create A Story

