Investigating the Perceived Difficulty of **Introductory Physics Problems** Elizabeth Gire & N. Sanjay Rebello

Research Questions:

- 1. Do students and instructors provide similar difficulty ratings for kinematics and work-energy problems?
- 2. Do the difficulty ratings provided by students correlate with the rate at which students solve the problems correctly?
- 3. Do the difficulty ratings provided by the students correlate with the familiarity of the problem as judged by the students?
- 4. Do the difficulty ratings provided by students and instructors correlate with the complexity of the problem?

Surveys of Problem Difficulty Estimation (SPDE)

SPDE Kinematics

- 10 problems (5 pt Likert Scale)
- Students: N=21 algebra-based intro
- Instructors: N=16 faculty & graduate students
- Students solved problem and rated familiarity and difficulty; Instructors rated difficulty

SPDE Work-Energy

- 16 problems (10 pt Likert Scale)
- Students: N=15 first year physics majors
- Instructors: N=14 faculty & graduate students
- Students and Instructors rated difficulty

Students' & Instructors' ratings of difficulty are different for many problems.

SPDE Median Difficulty Ratings from Students and Instructors and Mann-Whitney U Test Comparisons. Difficulty ratings are on a 10-point Likert scale for the SPDE Work-Energy and on a 5-point Likert scale for the SPDE Kinematics.

	Problem	P 01	P 02	P 03	Р 04	P 05	P 06	P 07	P 08	P 09	Р 10	Р 11	P 12	Р 13	Р 14	Р 15	Р 16
SPDE Work-Energy	Median Student Difficulty	2	2	2	5	6	5	4	6	6	6	5	5	4	6	6	3
	Median Instructor Difficulty	2	2	2	4	5	6	6	7	4.5	6	7	7	7	5	5	6
	P Mann-Whitney U Test	.71	.85	.96	.10	.04	.14	.01	.24	.16	.79	.01	.01	.00	.91	.55	.00
SPDE Kinematics	Median Student Difficulty	1	1	3	2	2	2.5	3	2	3	3						
	Median Instructor Difficulty	1	2	3	3	3	4	4	2	3	3						
	P Mann-Whitney U Test	.36	.01	.07	.06	.05	.00	.01	.32	.58	.18						

Difficulty Scale for SPDE Kinematics							
Rating		Example					
1	Very Easy	Example: An ant travels .9 meters in 1 second. What is the ant's speed?					
2							
3							
4							
5	Very Difficult	Example: As a science project, you drop a watermelon off the top of the Empire State Building, 320 m above the sidewalk. It so happens that Superman flies by at the same instant you release the watermelon. Superman is headed straight down with a speed of 35 m/s. How fast is the watermelon going when it passes Superman?					

Kansas State University

Both Instructors' and Students' ratings of difficulty correlate with <u>Students' score</u>. **Correlation is higher for Instructors.**

Correlations:

Instructors Students

R = 0.89, p < 0.01 R = 0.76, p < 0.01

Problem Scoring:

1 point = correct answer (*allowing for minor arithmetic errors*)

0 points = incorrect answer

Both Instructors' and Students' ratings of difficulty correlate with Students' ratings of <u>familiarity</u>.

Familiarity Scale

Correlations:

Instructors

Students

before

R = 0.88, p < 0.01

R = 0.95, p < 0.01

I have never solved a problem like this before.

I have solved this exact problem before.

I have solved a very similar problem before.

Both Instructors' and Students' ratings of difficulty correlate with problem <u>complexity</u> for the SPDE Kinematics.

10) of

Expecition	Deceriu					
	Descrip					
<u>Complication</u>	Questic					
<u>R</u> esolution	Answei					
<u>Example:</u>	How muck spring wit when it is					
Exposition	A spring (compress					
Complication 1	Find the p					
Complication 2	What _I					
Resolution 2	Definit linear					
Complication 3	Which variabl					
Resolution 3	k = 17(
Resolution 1	Potential					
3 Comp	plication/R Pair \rightarrow St					

Complexity

REFERENCES

- 63-84 (2000).
- on the web at: <u>http://web.physics.ksu.edu/SPDE2010</u>.
- 3. D. Halliday, R. Resnick & J. Walker, Fundamentals of Physics, 7th Edition, Wiley, 2005.
- 4. P. Heller, R. Keith & S. Anderson, Am. J. Phys, 60(7), 627-636 (1991).
- 2004.
- 7. R. Knight, Physics for Scientists and Engineers: A Strategic Approach, Addison Wesley, 2003.

Grant # 0816207

blem Complexity: ramework

ptions of the problem situation ons to be answered

rs to the complications

h potential energy is stored in a th spring constant k = 170 N/m compressed 5 cm?

spring constant = 170 N/m) is ed 5 cm.

potential energy of the spring.

physics idea to use?

tion of potential energy for a spring U = $\frac{1}{2}kx^2$

quantities go with which 0 N/m, x = 0.05 m

energy is 0.4 J

esolution (CR) Pairs

ep or Decision

CR Pairs \rightarrow

1. D. H. Jonassen, Educational Technology Research and Development, 48(3),

2. Copies of the SPDE Work-Energy and the SPDE Kinematics can be accessed

5. D. C. Giancoli, *Physics: Principles with Applications*, 6th Edition, Prentice-Hall,

6. P. Baggett, J. Verbal Learning and Verbal Behavior, 18(3), 333-356 (1979).