Students' Difficulties with Integration in Introductory Electricity and Magnetism Dong-Hai Nguyen ⁽¹⁾, N. Sanjay Rebello ⁽¹⁾ and Elizabeth Gire ⁽²⁾

INTRODUCTION

Motivation

Investigate difficulties the students have when solving E&M problems involving integration.

Methodology

Individual teaching/learning interview.

▶ 15 volunteers from a student E&M calculus-based introductory course.

Each student was interviewed four times during the course.

> Each interview came after an exam in the course.

 \succ In each interview, the students were:

- Asked to solve three to five problems posed in numerical, graphical equational and representations on the topics covered in the most recent exam.
- while Asked to think aloud solving the problems.
- Given verbal hints whenever they made a mistake or were unable to proceed.

 \succ In this study, we only consider the equational problems.

Physics problem solving with integration

Solving a problem physics involving integration can be divided into four steps:

 \succ recognize the need for an integral

 \succ set up the expression for the infinitesimal quantity

infinitesimal > accumulate the quantity

 \succ compute the integral

We will discuss students' difficulty in each of these four steps.

Interview 1

The arch problem distribution λ on the arch now depends on the angle θ as per the function: $\lambda(\theta) = \lambda_0 \cos \theta$

where λ_0 is a positive constant. Find the magnitude and direction of the electric field at your feet (i.e. at a point O on the ground directly below the top of the arch).

The rod problem following function:

O as shown in the figure below.

Interview 2

The cylindrical conductor problem

The capacitor problem length of this conductor. Find the resistance of this conductor.

The truncated-cone conductor problem length of this conductor. Find the resistance of this conductor.

Interview 3

The current problem

⁽¹⁾ Department of Physics, Kansas State University; ⁽²⁾ Department of Physics, University of Memphis

This work is supported in part by US National Science Foundation under grant 0816207.

FINDINGS

	Recognizing the need for an integral	Setting up expression for infinitesimal quantity	Accumulating the infinitesimal quantities	Computing the integral
)	All students integrated	All 15 students had correct expression for dE.	 7 students integrated the y-component of dE. The other 8 students integrated the whole dE. 	13 students could not recall the relation $dq = \lambda ds$.
	All students integrated	All 15 students had correct expression for dE.	All students integrated dE.	11 students did not recognize that "ds = dx" or interpreted "r" in Coulomb's law as radius.
n	3 students did not integrate	• 4 students had correct expression for dR. • The other 11 students wrote $dR = \rho(x) \frac{L}{A}$ or $dR = \rho(x) \frac{Ldx}{A}$	All students integrated dR.	All students were able to compute the integral.
ne	All students integrated	• 13 students had correct expression for dR. • The other 2 students wrote $dR = \frac{\rho L}{dA}$	All students integrated dR.	 One student set the limits from d to D. None of the students were able to compute the integral themselves.
	All students integrated	• 10 out of 12 students had correct expression for dC. • The other 2 students wrote $dC = \varepsilon \frac{dA}{L}$	 2 out of 12 students integrated 1/dC. The other 10 students integrated dC. 	None of the students were able to compute the integral themselves.
	2 students did not integrate	• 2 students had correct expression for dI. • The other 13 students wrote $dI = Aj(r)$ or $dI = Aj(r)dr$	All students integrated dl.	All students were able to compute the integral.

CONCLUSION

> Most of the students did not have significant difficulty recognizing the need for integration in solving the problems. We observed that the non-constant physical quantity given in the problem statement was the major cue for

 \succ Many students in our interviews ignored the infinitesimal term "dx" (or "dr", "d θ ") or simply appended it to the formula for the constant case or to a quantity that was changing - actions that essentially change the physical meaning of the expression for the infinitesimal quantity.

 \succ After having the correct expression for the infinitesimal quantity, almost all students started integrating that expression without noticing how these quantities should be added up.

> Students also had difficulties converting one variable to another variable, determining the limits of the integral, interpreting the physical meaning of symbols, and performing algebraic computation of the integrals.

