Facilitating Strategies for Solving Work-Energy Problems in Graphical and Equational Representations

Dong-Hai Nguyen, Elizabeth Gire and N. Sanjay Rebello
Department of Physics, Kansas State University

This work is supported in part by the US National Science Foundation under grant 0816207.

1. MOTIVATION

- In our previous study [1], we found that:
 - Students encountered a variety of difficulties when solving problems in graphical and equational representations.
 - These difficulties were primarily due to students’ inability to activate the required mathematical knowledge in the context of a physics problem.

- In this study:
 - We developed problem sets aimed at facilitating the activation of required mathematical skills to solve physics problems in graphical and equational representations.

2. RESEARCH QUESTION

Can a research-based sequence of math, physics and non-traditional problems improve students’ ability to solve physics problems in graphical and equational representations?

3. METHODOLOGY

Focus Group Learning Interviews (FOGLI)’s [2]

- Pre-test/post-test Control Group Design
- 20 engineering students enrolled in a calculus-based physics course were randomly assigned into either a control group (8 students) or treatment group (12 students)
- Students attempted a pre-test, a problem set prepared by the researchers and a post-test similar to the pre-test.
- Problem set for the treatment group included:
 - two pairs of matched math and physics problems
 - one debate problem
 - two problem posing tasks [3]
- Problem set for the control group included isomorphic textbook problems covering the same topics and principles.
- Students worked individually on the pre-test and post-test and worked in pairs on the problem set.
- Students in the control group were provided with a printed solution of each problem while students in the treatment group were required to check in with a moderator before proceeding to the next problem.

4. INTERVIEW PROBLEMS

4.1. Problem set for the control group in FOGLI session 3

4.2. Problem set for the treatment group in FOGLI session 3

5. RESULTS

- Problems in the pre-test and post-test graded separately on the physics part and the representation part.
- The non-parametric Mann-Whitney test used to test significance of the difference in scores between control and treatment groups.

5.1. Mann-Whitney for physics scores

6. CONCLUSIONS

Initial results suggest that our research-based sequence of problems has a positive effect in improving students’ performance on the representation aspect of problems, while it is not as effective in improving students’ performance on the physics aspect of problems.

7. REFERENCES