

Facilitating Students' Problem Solving Across Multiple Representations in Introductory Mechanics

1. PHASE 1 – SPRING 2009

1.1 Research Questions

- > RQ1: What kinds of difficulty do students encounter while solving physics problems posed in graphical and equational representations?
- RQ2: What kind of scaffolding may help students overcome those difficulties?

1.2 Methodology

- Individual teaching/learning interviews
- 20 student volunteers from a first-semester calculus-based introductory physics course
- Each participant was interviewed four times during the semester.
- Each interview came after an in-class exam.
- In each interview, the students were …
 - Asked to solve three problems
 - Original problem: a problem from the most recent exam
 - Graphical problem: part of the information was given as a graph
 - Equational problem: part of the information was given as a function
 - Asked to think aloud while solving the problems
 - Given verbal hints whenever unable to proceed

1.3 Example of Interview Problems

A hoop radius r = 1 cm and mass m = 2 kg is rolling at an initial speed v_i of 10 m/s along a track as shown. It hits a curved section (radius R = 2.0 m) and is launched vertically at point A. What is the launch speed of the hoop as it leaves the slope at \bullet point A?

Figure 1. Original problem in interview 4

A sphere radius r = 1 cm and mass m = 2kg is rolling at an initial speed v_i of 5 m/s along a track as shown. It hits a curved section (radius R = 1.0 m) and is launched vertically at point A. The rolling friction on the straight section is negligible. The magnitude of the rolling friction force

acting on the sphere varies as angle θ as per the graph shown below. What is the launch speed of the sphere as it leaves the curve at point A?

Figure 2. Graphical problem in interview 4

A sphere radius r = 1 cm and mass m = 2kg is rolling at an initial speed v_i of 5 m/s along a track as shown. It hits a curved section (radius R = 1.0 m) and is launched vertically at point A. The rolling friction \longrightarrow on the straight section is negligible.

The magnitude of the rolling friction force $F_{roll}(N)$ acting on the sphere varies as angle θ (radians) as per the following function

 $F_{roll}(\theta) = -0.7\theta^2 - 1.2\theta + 4.5$

What is the launch speed of the sphere as it leaves the curve at point A?

Figure 3. Equational problem in interview 4

Dong-Hai Nguyen, Elizabeth Gire and N. Sanjay Rebello

Department of Physics, Kansas State University This work is supported in part by the US National Science Foundation under grant 0816207.

. PHASE 1 – SPRING 2009 (Cont'd)

1.4 Results

Students' difficulties with the problems in our interviews fall into two categories.

- > Difficulties with the physics: inappropriate use of physics principles and concepts.
- Difficulties with the representation:
 - Extracting information from graph
 - Calculating physical quantity from graph/equation
 - Activating required math knowledge in context of physics

Scaffolding (verbal hints) provided by the interviewer.

- > Asking students to rethink about physics principles correct students' help mav misunderstanding.
- Guiding students to discuss the physical meaning of mathematical processes may help students activate the correct mathematical knowledge and skills in physics contexts.

2. PHASE 2 – SPRING 2010

2.1 Motivation

Develop sets of research-based exercises targeting the common difficulties observed in phase 1 of the study and test their impact on students' learning to solve physics problems in graphical and equational representations.

2.2 Research Question

Can a research-based sequence of math, physics and non-traditional problems improve students' ability to solve physics problems in graphical and equational representations?

2.3 Methodology

- Focus Group Learning Interview (FOGLI)
- Pre-test/Post-test Control Group Design
- \geq 20 engineering students enrolled in a calculus-based physics course were randomly assigned into either the control group (8 students) or treatment group (12 students)
- > Students attempted a pre-test, a problem set prepared by the researchers and a post-test similar to the pretest.
- Problem set for the treatment group included:
 - two pairs of matched math/physics problems
 - one debate problem
 - two problem posing tasks
- Problem set for the control group included isomorphic textbook problems covering the same topics and principles.
- Students worked individually on the pre-test and posttest, worked in pairs on the problem set.
- Control group provided with printed solution of each problem
- Treatment group required to check-in with a moderator before proceeding to next problem.

2. PHASE 2 – SPRING 2010 (Cont'd)

Problems in the pre-test and post-test graded separately on the physics part and the representation part.

The non-parametric Mann-Whitney test used to test significance of the difference in scores between control and treatment.

		T 71 • /	C	1 •	
TABLE I	L. Mann-V	<i>W</i> hitney	tor	physics	scores

Problem	Pre-test	Post-test
	p = 0.23	p = 0.12
Graph	z = - 1.24	z = - 1.57
	r = - 0.26	r = - 0.33
Equation	p = 0.19	p = 0.07
	z = - 1.31	z = - 1.80
	r = -0.28	r = -0.38

 \succ Table 1 : Treatment does not appear to improve students' ability to solve work-energy problems compared to the control.

TABLE 2. Mann-Whitney for *representation* scores

Problem	Pre-test	Post-test
Graph	p = 0.20	p = 0.04
	z = - 1.29	z = - 2.07
	r = -0.28	r = -0.44
Equation	p = 1.00	p = 0.01
	z = -0.00	z = - 2.65
	r = -0.00	r = - 0.56

> Table 2 : Score on representation aspect of the treatment group is not statistically significantly higher than that of the control group on the pre-test, but it is statistically significantly higher in the post-test.

 \succ Treatment problem set improves students' ability to work with graphical and equational representations more than the control problem set does.

3. CONCLUSIONS

Students' difficulties with....

- Physics of the problems were due primarily to students' misunderstanding or misuse of physical principles and concepts,
- Representation graphical and equational were due to students' inability to activate the appropriate mathematical knowledge in physics contexts.

Research-based sequence of problems...

- has a positive effect in improving students' performance on the representation aspect of problems, but
- it is not as effective in improving students' performance on the physics aspect of problems.