Investigating Students' Transfer of Problem Solving Skills in Physics Across Multiple Representations

N. Sanjay Rebello ${ }^{\dagger}$, Elizabeth Gire ${ }^{\dagger}$, Dong-Hai Nguyen ${ }^{\dagger}$ Dean A. Zollman ${ }^{\dagger}$, Andrew G. Bennett ${ }^{*}$, Steve Warren ${ }^{\top}$
† Dept. of Physics, Kansas State Univ.; *Dept. of Mathematics, Kansas State Univ.; " Dept. of Electrical \& Computer Engineering, Kansas State Univ. http://web.phys.ksu.edu/reese

Motivation

Gain insights into...

- the processes by which students' transfer their...
- problem solving skills across multiple representations in physics
- mathematical knowledge and skills to physics problems.
- the ways in which we can facilitate these transfer processes.

Research Questions

- RQ1: What kinds of barriers do students encounter when transferring their problem solving skills across multiple representations?
- RQ2: What kinds of scaffolding are useful in facilitating students to transfer their problem solving skills across multiple representations?
- In what ways does the sequence in which representational scaffolding is presented affect students' ability to transfer their problem solving skills?

Theoretical Perspective

Vygotsky's (1978) Zone of Proximal Development (ZPD)

- ZPD is the distance between what learners can accomplish by themselves and what they can accomplish with assistance (scaffolding) from another more experienced individual.

Beyond Students' ZPD	
Students' ZPD	Scaffolding provided to
(Problems they solve with assistance)	\downarrowlearner in form of verbal hints and Socratic dialog
Students' Zone of Capabilities (Problems they solve without assistance)	

Research Context

- Undergraduate Engineering majors at K-State
- Longitudinally follow students ...
- from calculus course sequence
- to calculus-based physics course sequence.

Methodology

- Individual Teaching/Learning Interviews (N=20)
- Students solved problems in different sequences of representations.
- Scaffolding (hints, questions) provided when difficulties encountered.
- Data analyzed to gauge effectiveness of scaffolding to facilitate transfer.
- Ongoing: Develop appropriately sequenced problems to facilitate transfer.

What is the speed of the ball at launch point A?
First Problem (Verbal)
A 0.1 kg bullet is loaded into a gun (muzzle
length 50 cm) compressing a spring.
The gun is fired at a 30° angle. The barrel of the gun is frictionless and when the gun is horizontal the net force, $\mathrm{F}(\mathrm{N})$ exerted on a bullet by the spring as the bullet leaves
the fully compressed spring varies as a
function of its position $x(m)$ in the barrel
Graphical

What is the speed of the bullet as it leaves the gun?

Some Early Results

- After verbal problem, fewer difficulties on graphical problem compared to equation problem ($\alpha=0.1$ significance).
- Solving the graphical problem before the equation problem decreased the difficulties in solving the equation problem ($\alpha=0.1$ significance), but converse not true.

