

[^0]

Some Caveats

'Horizontal' \& 'Vertical' Transfer...

- are not mutually exclusive.
- A given thinking process might involve elements of both 'horizontal' and 'vertical' transfer.
- cannot be universally labeled.
- What is perceived as 'vertical' transfer by a novice may be perceived as 'horizontal' transfer by an expert.

and several others....

Research Question	
To what extent do students transfer their calculus knowledge while problem solving in introductory calculus- based physics?	

\pm 'Calculus to Physics' Study Research Participants

- Students ($\mathrm{N}=28$)
- Enrolled in $2^{\text {nd }}$ semester, calculus-based physics
- After covering relevant topics in electricity and magnetism
- Teachers: Faculty, Instructors and TAs
- Physics
($\mathrm{N}=6$)
- Mathematics
($\mathrm{N}=4$)

'Calculus to Physics' Study 'Jeopardy’ Questions
Construct a physical situation that is described by the following expression
$2 \times\left[\begin{array}{c}\int_{0}^{\frac{\pi}{6}}\left(8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}\right) \frac{\left(2 \times 10^{-10} \mathrm{C} / \mathrm{m}\right)\left(5 \times 10^{-2} \mathrm{~m}\right) \cos \theta d \theta}{} \\ \begin{array}{c}\text { Our goal is not to find out whether } \\ \text { they get these problems right, } \\ \text { rather the process they use to } \\ \text { attempt the problems }\end{array}\end{array}\right]$

'Calculus to Physics' Study

 Teacher Interview Results
Mathematics teachers.

- focus on techniques of calculus.
- realize value of applications, but cannot address them.
- seldom use 'word' problems.

Implications for Instruction

- Balance horizontal and vertical transfer
- Follow an 'Optimal Adaptability Corridor'
- Adapt the Modeling Cycle
- First Model Development
- Then Model Deployment
- Employ strategies that ...
- Use cognitive conflict to promote model development
- Scaffold learning within Zone of Proximal Development
- Use metacognitive reflection to create adaptive learners

We can also apply this to...

- Learning how to Learn:
- Students deploy strategies to succeed in science/math, based on their model of what it takes to succeed in this course.
- If they fail, they reach a point of dissonance - model does not work.
- We can then facilitate a process by which they reflect and develop a revised model of how to learn science/math.

We can also apply this to...

- Learning how to Teach:
- As teachers we deploy our model of how students learn and how we should teach.
- If students fail our assessments, we reach a point of dissonance - our model of learning and teaching does not work.
- We then develop a revised model of how they learn, and think about how we can teach more effectively.

'Representational Fluency' Study
- How do students develop representational fluency?
- What kinds of difficulties do students encounter when solving problems in multiple representations?
- What kinds of scaffolding are useful in helping students overcome those difficulties?

Is there any evidence that this will work in helping students transfer math knowledge to physics?

'Representational Fluency' Study
Individual Interviews General Results (Spring \& Fall 2009)

- All students able to solve problems with hints.
- Initially had trouble invoking integral = area under the curve.
- Had difficulty coordinating geometric and algebraic modes of thinking.
- Little evidence that students can interpret integration as accumulation.
- Fewer difficulties when graph problem before equation problem, than vice-versa.
'Representational Fluency' Study
Focus Group Interviews (Spring 2010) Control Group Treatment Group

Pre-Test : Prob. 2 \& 3 from Fall 2009 Interview

1. Physics Problem (Graph)
2. Physics Problem (Graph)
3. Physics Problem (Equation)
4. Physics Problem (Equation)
5. Physics Problem (Similar to Fall 2009 Prob. 1, Verbal)
6. Math Problem (Graph)
7. Physics Problem (Graph)
8. Math Problem (Equation)
9. Physics Problem (Equation)
10. Debate Problem (Similar to Fall 2009 Prob. 1, Verbal)
11. Problem Posing (Combine previous problem w/Graph, Equation)

Post-Test : Similar to Pre-Test, different numbers
'Representational Fluency' Study Conclusions

'Representational Fluency’ Study SUMMARY

- Students have difficulty...
- solving problems that present information in graphical and equational representations.
- recognizing how to appropriately apply the concept of integration in physics problems
- Promising interventions...
- involve the use of vertical and horizontal transfer.
- use a sequence of math and physics problems.
- use debate problems and problem posing tasks to facilitate metacognition.

Thank You

For further information srebello@phys.ksu.edu

[^0]: ## Some Emerging Views of Transfer

 - (Re) construct knowledge in new context.
 - Knowledge can transfer in pieces.
 - We must examine anything that transfers.
 - Dynamic, real-time assessment e.g. interviews.
 - Focus also on mediating factors e.g. motivation.

 > Transfer is ubiquitous.

