Using Optical Analogies While Teaching Physics of X-rays and CAT Scans

Spartak Kalita & Dean Zollman Kansas State University

Supported by the NSF grant DUE 0427645

Modern Miracle Medical Machines Goals

- Conduct research on students' models in the realm of medicine-related physics
- Develop active engagement instructional materials to help students learn applications of modern physics to contemporary medicine

Investigating Students' Models Methodology

Two stages:

- Stage 1: Clinical interview
- Stage 2: Teaching interview

Algebra-based physics students (N=13)

- Six (6) 1st Semester
- Seven (7) 2nd Semester
- Mostly health-related majors

Clinical Interview

Familiarity with X-rays

Have you seen such pictures? Can you group them?

Clinical Interview

Questions

- How do X-rays interact with our body parts?
- What other things are similar to X-rays?
- What makes things visible to X-rays?
- What can you tell about other medical imaging techniques?

Clinical Interview

Results

- Almost all identify X-rays as a part of the spectrum
 - Often do not know where to place them in the spectrum
- Most strongly associate
 - Strength of X-rays with their physical danger
 - X-ray visibility with density of material they interact with

Closed LEGO[®] Box

- An object of an unknown shape and size in the closed box
- Students are asked:
 - Can you find the shape and location of an object?
 - What equipment do you need?

Open LEGO[®] Box

- Students shown
 - Equipment:
 - Photo voltmeter
 - Light source
 - Open LEGO[®] box
- Students are asked:
 Will this help you solve the task with the closed box?

Teaching Interview Predict Location & Shape

- Go around the box and record the light intensity along the perimeter.
- Make predictions about the shape and location of an object inside the box.
- How does the intensity depend on the number of LEGO[®] bricks?

Understanding Attenuation

- Predict intensity change as we add bricks one by one.
- Measure intensity vs. number of bricks and modify your prediction.
- Qualitatively explain the intensity measurements.

Opening Closed LEGO ® Box

- Prompted to apply previous ideas to predict what's inside closed box.
- Open the closed box.
- Discuss reasons for any discrepancies.

Teaching Interview Concluding Reflections

- How helpful was the lab as the whole?
- How useful were different parts of it?
- What are the limitations of this model?
- What kind of changes would you propose?

Results

- All students successfully completed the lab.
 - Most (10 out of 13) needed very little prompting.
- Those (3 out of 13) who needed prompting...
 - Could not identify the type of equipment needed
 - When they were shown the equipment, they understood the qualitative process but not the systematic procedure.
- Most could figure out the sources of errors in the lab

Future Studies Group Teaching Interviews Closer to real lab settings Develop the lab activity Based on results of the interviews Implement the lab activity in a real class Assess students' learning

Thank you!

Modern Miracle Medical Machines website http://web.phys.ksu.edu/mmm/

spartak@phys.ksu.edu