

Collaborators

Edgar Corpuz, Lili Cui,

Aileen Corpuz, Bijaya Aryal, Spartak Kalita, Charles Mamolo, Brian Adrian, Dean Zollman

Previous Collaborators

Alicia Allbaugh, Kara Gray, Zdeslav Hrepic, Carina Poltera, Jackie Haynicz Peter Fletcher, Paula Engelhardt, Salomon Itza-Ortiz

What is Transfer?

Ability to use what you have learned in one situation in a different situation.

E.g. McKeough, Lupart & Marini (1995)

Research Question

How do students transfer their knowledge from one situation to a new situation?

Views of Transfer

- Identical elements must exist between situations.
- Knowledge must be encoded in a coherent model.
- Researcher can pre-decide what must transfer.
- Static one-shot assessment e.g. tests and exams.
- Focus mainly on students' internal knowledge.
- Transfer is rare.

Are these views applicable when we examine students' sense making?

E.g. Gick & Holyoak (1980); Reed & Ernst (1974), Throndike (1906)

Example: Interview on Optic Fibers

(Mateycik, Wagner, et. al., Proc. 2004 PER Conference)
From what I understand, it's a, it's almost a series of

In light of this example, do we need to rethink what transfer actually means?

Other Views of Transfer

- (Re)construct knowledge in new context.
- Knowledge can transfer in pieces.
- Researcher must examine 'anything' that transfers.
- Dynamic, real-time assessment e.g. interviews
- Focus also on variety of mediating factors.
- Transfer is ubiquitous.

Hammer et al (2005); diSessa & Wagner (2005); Bransford et al (1999); Lobato (2003, 1996); Greeno et al (1993)

'Horizontal'	'Vertical'
"Low Road" 1, "Class C" 2 Transfer	"High Road" 1, "Class A" 2 Transfer
"Assimilation" of new experiences ³	"Accommodation" of new experiences
Involves Deductive reasoning: 'Model Deployment' ⁴	Involves Inductive reasoning: 'Model Development' ⁴
Uses "Applicative" knowledge 5	Uses "Interpretive" knowledge 5
Focus on "Efficiency" ⁶	Focus on "Innovation" 6
'Sequestered Problem Solving' 7	'Preparation for Future Learning' 7
Structured, traditional problems 8	Ill-structured, non-traditional problems
Single/few internal representations activated repeatedly ⁸	Choosing, using and constructing multiple internal representations ⁸

'Horizontal' & 'Vertical' Transfer...

- are not mutually exclusive.
 - A given thinking process might involve elements of <u>both</u> 'horizontal' and 'vertical' transfer.
- cannot be universally labeled.
 - What is perceived as 'vertical' transfer by a novice may be perceived as 'horizontal' transfer by an expert.

Reframed Research Questions

- How do students engage in 'horizontal' and 'vertical' transfer?
- Under what conditions do they engage in each?
- Is there a preferred sequence for these processes?

and several others....

18

'Calculus to Physics' Study

Research Question

To what extent do students retain and transfer their calculus knowledge while problem solving in introductory calculus-based physics?

Cui et. al. (2005)

'Calculus to Physics' Study

Research Participants

- Students (N = 28)
 - Enrolled in 2nd semester, calculus-based physics
 - After covering relevant topics in electricity and magnetism
- Teachers: Faculty, Instructors and TAs
 - Physics (N = 6)
 - Mathematics (N = 4)

20

'Calculus to Physics' Study

Research Plan

Semi-structured Interviews

- 'Horizontal' Transfer
 - Textbook-like Problems
- 'Vertical' Transfer
 - 'Contrasting Cases'
 - 'Jeopardy' Problems

¹ Schwartz, Bransford & Sears (2005)

² Van Heuvelen & Maloney (1999)

CONCLUSIONS

- Transfer of learning is a complex process and must be considered from different perspectives.
- Students instinctively engage in 'horizontal' transfer and attempt 'vertical' transfer only if 'horizontal' transfer has not worked for them.
- Most of instruction focuses on 'horizontal' transfer and does not prepare students for 'vertical' transfer.
- To create adaptive learners, we must balance both; we have some evidence that this can perhaps be done through carefully designed sequences of small steps of both 'vertical' and 'horizontal' transfer.

THANK YOU

56