Do Future Teachers' Views & Epistemic Beliefs About Science Change After a Single Course?

N. Sanjay Rebello
&
Charles B. Mamolo
Kansas State University

Research Participants & Context

- **Elementary Education Majors**
 - *N* = 108
 - 95% Women

- **Conceptual Physics Course**
 - Almost no students have High School Physics

- **Pedagogy: Learning Cycle**
 - Exploration: 1st half of week in Activities Center.
 - Concept Introduction: Lecture with Peer Instruction.
 - Application: 2nd half of week in Activities Center

Data Sources

Pre-Post Comparisons of scores on...

- **Epistemic Beliefs in the Physical Sciences** (EBAPS)
 - A 30-question multiple-choice questionnaire

- **Views about Nature of Science** (VNOS)
 - A seven-question open-ended questionnaire

EBAPS Dimensions

- **Structure of Knowledge**
 - Coherent vs. Pieces

- **Nature of Learning**
 - Propagated from authority vs. Self constructed

- **Real-Life Applicability**
 - Applicable vs. Non-applicable to the real world

- **Evolving Knowledge**
 - Knowledge changes with time

- **Source of Ability to Learn**
 - Innate vs. Acquired

EBAPS Results

VNOS Dimensions

- **Empirical Nature of Scientific Knowledge**
 - Observations are used in making scientific claims.

- **Inference & Theoretical Entities in Science**
 - Scientific models are inferential in nature.

- **Nature of Scientific Theories & Laws**
 - Theories provide a framework for examining evidence.
 - Laws may change.

- **Creativity & Subjectivity in Science**
 - Creativity permeates science, no single scientific process.
 - Science is a mixture of objective & subjective components.

- **Social & Cultural Influences**
 - Science is a culture in itself and is influenced by society.
VNOS Results

<table>
<thead>
<tr>
<th>Dimension</th>
<th>PRE</th>
<th>POST</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical Nature of Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inferential Nature of Models</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific Theories & Laws</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creativity & Subjectivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social & Cultural Influences</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

% Respondents Showing Evidence of Understanding

Conclusions

Future elementary teachers’...

- Epistemic beliefs (as measured by EBAPS) do not change significantly after this course.
 - Only change in “Real-Life Applicability” dimension

- Views of Nature of Science (as measured by VNOS) do not change significantly after this course.
 - Only change in “Inferential Nature of Models” dimension

Limitations of Study

Inherent limitations in the instruments

- **EBAPS:**
 - Teasing Epistemology vs. Expectations
 - Teasing Beliefs vs. Goals
 - Inferring students’ sophistication
 - Inviting stock responses from students

- **VNOS:**
 - Validity of interpreting open-ended responses
 - Inter-rater reliability (low ~70%)

Implications

A single reformed science course, even one that uses research-based pedagogy, may not significantly alter students’ views or epistemic beliefs about science.

These issues may need to be explicitly addressed over the long term in a students’ educational experience.

THANK YOU

For information please contact

cbmamolo@phys.ksu.edu

OR

srebello@phys.ksu.edu