Students’ Ideas of Force-Distance Tradeoff in an Inclined Plane

Jacquelyn J. Chini (née Haynicz),
N. Sanjay Rebello,
Kansas State University

Sadhana Puntambekar,
University of Wisconsin, Madison

Supported in part by NSF Grant DRL- 0437660
CoMPASS Curriculum

- CoMPASS\(^1\)
 - Design- & project-based
 - Interactive hypertext
 - Concept maps & textual descriptions

- Simple Machines
 - Conceptual understanding
 - Force, work, force-distance tradeoff
 - Our focus: Inclined planes

\(^1\)S. Puntambekar and A. Stylianou, 2005
Research Context

- 85 participants
 - Conceptual physics: elementary education majors
 - 93% female
 - 92% between ages of 18 and 22

- Interview Protocol
 - Inclined planes pre-test & anticipation guide
 - Brainstorming & predictions of length and surface
 - CoMPASS hypertext system
 - Hands-on activities
 - Open-ended summary questions & post-test

- Data sources
 - Videos of activities
 - Worksheets
Research Questions

- What factors influence students’ predictions about the length & surface of an inclined plane that would best complete their challenge?

- To what extent did students’ knowledge of inclined planes improve after using the CoMPASS curriculum?
Students’ Predictions

Length and surface of board to best complete the challenge:

- **Use of everyday physical reasoning**
 - “The length of the board I will need has to be bigger and wider than the pool table. This will allow me to have enough space and balance to carry/pull the table.”
 - “Make sure wood is thick enough so it won’t snap.”

- **Consistent with physics principles**
 - “You will want a board with a little friction because you don’t want the pool table to slide easily (if it were to slide backwards).”
 - “Surface with some kind of friction so you won’t slide on the smooth surface.”
Inclined Plane Activities

- CoMPASS hypertext system
 - Students chose concepts to click on map.
 - Possible concepts: force, work, energy, mechanical advantage etc.

- Hands-on Activities
 - Same surface, different lengths.
 - Same length, different surfaces.
Pre / Post-Test

Which takes the least effort force (applied force)….

<table>
<thead>
<tr>
<th>Q#</th>
<th>Situations Compared</th>
<th>Figures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Two ramps with same vertical height, different distance up ramp</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Ramp vs. Lifting</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Two ramps with same distance up ramp, but different vertical height</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>With friction vs. Without friction</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Two ramps with different vertical heights and distance up the ramp, but with same steepness</td>
<td></td>
</tr>
</tbody>
</table>
Pre / Post-Test Results

- Pre-test mean: 3.5/5
- Post-test mean: 4.3/5
- Two-tailed t-test: $p \leq 4 \times 10^{-8}$.
- Q5: Worst scores
Question 5

Which ramp will require the least effort force?

A: 4 m 1 m
B: 8 m 2 m

C: Both equal
D: Not enough information

- Only 45% got question 5 correct on post-test
- 40% of students chose Ramp A
- Students appeared to:
 - have difficulty relating **effort force** and **steepness**.
 - focus on **length** or **height** individually, not together.
Conclusions

- What factors influence students’ predictions about the length & surface of an inclined plane that would best complete their challenge?
 - Evidence of everyday physical reasoning.
 - Some ideas consistent with physics principles.

- To what extent did students’ knowledge of inclined planes improve after using the CoMPASS curriculum?
 - Evidence of improvement in understanding...
 - that ramps require less effort force than lifting.
 - how ramp height, length, and friction affect effort.
 - Lack understanding that steepness is key factor.
Contact Information:

haynicz@phys.ksu.edu

or

srebello@phys.ksu.edu

CoMPASS Website:
www.compassproject.net