Visualizations for Teaching Vision and Wavefront Aberrometry

Dyan L. McBride
AAPT Summer – July 28, 2009

Motivation
- Teaching wavefront aberrometry
 - Method of vision diagnosis - visual process
 - Students have little knowledge of vision
- Research on knowledge construction
 - Use knowledge of eye and vision in new context of wavefront aberrometry
- Design visualizations to facilitate effective transfer to new context

Reactions and Outcomes
- Students reaction: clearer representation
 - Differences are more drastic
 - ‘More precise’ - final result more quickly
 - Tended to overlook some features
 - Focused primarily on only one thing
 - Ex – overlook light rays, focus on lens shape
- Disadvantages
 - No way to deal with concave lenses alone
 - Too basic for some students

Reactions and Outcomes
- Easily applied information from “Screen”
 - Image and object distance
 - Radius-of-curvature of lens
- Nearsightedness and Farsightedness
 - Easily see light rays cross – image location
 - Corrective lenses – move image location
- Disadvantages:
 - Lenses don’t look convex/concave
Aberrometry Visualization

Reactions and Outcomes

- Student reactions:
 - More clear than hands-on, distinctive
 - 2D is hard to understand without 3D first
 - Tended to overlook some features
 - Focused primarily on only one thing
 - Ex – overlook light rays, focus on lens shape
- Understood wavefront aberrometry
 - Needed help understanding why grid changes

Conclusions

- Research-based visualizations
 - Assisted in helping students (of all levels) understand wavefront aberrometry

- Guided inquiry visualizations worked best
 - Students likely to overlook features otherwise

- Assisted students in understanding a difficult physical phenomenon

Thanks to
Hartmut Weisner and Rachel Alexander
Ludwig Maximilians Universitat, München

Contact Information:
Dyan McBride - dmcbride@mercyhurst.edu
Dean Zollman - dzollman@phys.ksu.edu