Exploring Students' Patterns Of Reasoning

Mojgan Matloob, Sytil Murphy & Dean Zollman Kansas State University

Cynthia Sunal & Dennis Sunal University of Alabama

Cheryl Mason San Diego State University

Supported by National Science Foundation Grant ESI-055494

Introduction- What is Content Question

Example question in Biology

 You are giver different ow and see How to determine the cognitive load and level the of abstraction? nts with te flowers and others swolle with swoll pods and yellow flowers. Predict which trait is dominant and recessive?

Bloom's revised taxonomy for classifying the components of reasoning ¹

Table 1- Selection from Knowledge Dimension

Factual
knowledgeKnowledge of elements and essential factsKnowledgeKnowledge of classification ,principles ,knowledgetheories and structures, Conceptual schemaProcedural
knowledgeKnowledge of subject-specific skills,
algorithms, techniques, methods and
procedures

1-Anderson et. al, 2001

Bloom's revised taxonomy for classifying the components of reasoning, Cont.

Table 2- Sel	ection from Cognitive Dimension
Remember	Recognize (identify), Recall (retrieve from memory)
Understand	Interpret (paraphrase, change representation), Infer (draw logical conclusion), Classify (categorize),Compare and Contrast, Explain (construct cause and effect model)
Apply	Implement (apply a procedure to an unfamiliar task), Execute (apply a procedure to a familiar task)

Factual		Heterozygous, homozygous, recessive, and dominant		
Conceptual		Interaction between member alleles of the pair that produce outcome pair of alleles		
Classifica Procedure Compare	for e Taxo	ric(<i>In-depth, developed, Naïve)</i> ¹ each component of Bloom's onomy		
Infer		Justify how and why cause related to the effect		
Apply		Apply the multiplication rule of probability to the cross of two traits to interpret the outcome phenotypes		

Modification to Lawson's² definition to make it appropriate for physics contexts

2-Lawson et. al (2000)

Type of Reasoning		Rubric	Concept link
"Yellow is dominant and swoll dominant"	Naive	T,D	
"I predict that swollen are don white is recessive because yo pinched pods after the cross a yellow flowers"	Factual, Conceptual, (Developed) Others(Naïve)	T-D	
"Both swollen pods and whit dominant. Swollen pods are offspring while pinched are flowers come from the reces of the yellow"	Presence-D	Factual. Dominance Recessive-W	t D
"When both yellow were bree appear which seems to claim 2 heterozygous plants cross t recessive gene can appear"	that only when	Recessive-vv	

Conclusion

- We can devise content questions with predetermined level of thought processes
- Assessment tool that categorize different levels of thinking
- We can find the weaknesses and strengths of students' reasoning in our classification scheme(concept structure, type of knowledge or cognitive process)
- Students' performance decline when the higher hierarchies of knowledge is required
- As the answers display in-depth level of knowledge the conceptual structure is more shown to be multi-level link

Thank you mojgan@phys.ksu.edu