Using an ECR Framework to Characterize Problem Difficulty

Elizabeth Gire
N. Sanjay Rebello

Kansas State University

This work is supported by the National Science Foundation under grant 0816207

Research Questions

How do students’ and instructors’ estimation of difficulty compare?

How does the complexity of a problem affect its perceived difficulty?
Project

- Developed a Survey of Problem Difficulty Estimation (SPDE)
- SPDE → Students & Instructors
- Developed a rubric for textbook style physics problems.
- Correlation between SPDE and the rubric

SPDE (Survey of Problem Difficulty Estimation)

- 16 Work & Mechanical Energy problems
 - Halliday, Resnick & Walker, 7th Ed.
 - Context Rich Problems
 - Numbers, symbols, equations, graphs, pictures
- Online Delivery

<table>
<thead>
<tr>
<th>Rate</th>
<th>Solve & Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Easiest</td>
</tr>
<tr>
<td>10 pt Likert-Scale</td>
<td>Most Difficult</td>
</tr>
<tr>
<td>Question</td>
<td>1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16</td>
</tr>
</tbody>
</table>
SPDE → Students & Instructors

15 **Freshman Physics Majors**

“Estimate the difficulty”

14 **Instructors**

“Estimate the difficulty for a student”

Independent Samples Mann-Whitney U Test

<table>
<thead>
<tr>
<th>Problem</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
<th>P6</th>
<th>P7</th>
<th>P8</th>
<th>P9</th>
<th>P10</th>
<th>P11</th>
<th>P12</th>
<th>P13</th>
<th>P14</th>
<th>P15</th>
<th>P16</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-value</td>
<td>0.71</td>
<td>0.85</td>
<td>0.96</td>
<td>0.10</td>
<td>0.04</td>
<td>0.44</td>
<td>0.01</td>
<td>0.34</td>
<td>0.79</td>
<td>0.01</td>
<td>0.96</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Median Stu</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Median Inst</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Rubric - ECR Framework

Exposition

Liz is a post-doc in the Kansas State physics education research group.

Complication

The physics education community is unaware of the work that she is doing at Kansas State University.

Resolution

Liz goes to the AAPT 2010 Winter Meeting and gives a well-received talk about her research.

Baggett, 1979
ECR & Physics Problems

How much potential energy is stored in a spring with spring constant $k = 170 \text{ N/m}$ when it is compressed 5 cm?

Exposition

Spring with $k = 170 \text{ N/m}$ compressed 5 cm

Complication

- What physics idea to use?
- Definition of potential energy for linear spring

 \[U = \frac{1}{2}kx^2 \]

Resolution

- Which numbers go with which variables?

 $k = 170 \text{ N/m}, x = 5 \text{ cm}$

- Value of the potential energy

Reliability

<table>
<thead>
<tr>
<th>Problems</th>
<th>Reliability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solved Textbook Examples</td>
<td>0.78</td>
</tr>
<tr>
<td>SPDE Problems</td>
<td>0.72</td>
</tr>
</tbody>
</table>
ECR & SPDE Correlation

Instructors

Students

Conclusions

- Student and instructor estimation of problem difficulty can be quite different
 - No global trend
 - Context rich problems → students estimate as easier
- Instructors’ difficulty estimations rely more strongly on the number of steps in the solution than do students’.
 - Compare correct response rate with difficulty estimation & ECR score
 - Other physics topics
Thank You

egire@phys.ksu.edu
srebello@phys.ksu.edu

SPDE (Survey of Problem Difficulty Estimation)
- Online survey
- 16 Work & Mechanical Energy problems
 - Halliday, Resnick & Walker, 7th Ed.
 - Context Rich Problems
 - Numerical, equations, graphs, pictures

| Position: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 |
|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| Winter | Q2 | Q11 | Q6 | Q7 | Q8 | Q1 | Q9 | Q12 | Q15 | Q3 | Q16 | Q10 | Q13 | Q14 | Q4 | Q5 |
| Spring | Q3 | Q5 | Q16 | Q7 | Q10 | Q1 | Q11 | Q12 | Q13 | Q4 | Q14 | Q6 | Q8 | Q9 | Q2 | Q15 |
| Summer | Q13 | Q3 | Q7 | Q4 | Q14 | Q5 | Q10 | Q8 | Q2 | Q12 | Q15 | Q6 | Q11 | Q1 | Q16 | Q3 |
| Fall | Q11 | Q2 | Q8 | Q5 | Q1 | Q15 | Q6 | Q9 | Q13 | Q14 | Q16 | Q4 | Q7 | Q12 | Q10 | Q3 |

Solve & Rank

Rank 1 → Easiest
10 pt Likert-Scale 10 → Most Difficult
What makes a physics problem difficult?

<table>
<thead>
<tr>
<th>Characteristics of the Problem</th>
<th>Interaction Between Problem & Solver</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓ Amount of information given in the problem</td>
<td>✓ What knowledge does the solver possess that can be used to solve the problem?</td>
</tr>
<tr>
<td>✓ How information given in the problem</td>
<td>✓ What knowledge does the solver possess that they see as relevant to the problem?</td>
</tr>
<tr>
<td>✓ Amount of math manipulation involved in the solution</td>
<td>✓ How familiar is the context?</td>
</tr>
<tr>
<td>✓ Which physics ideas are involved in the solution</td>
<td></td>
</tr>
</tbody>
</table>