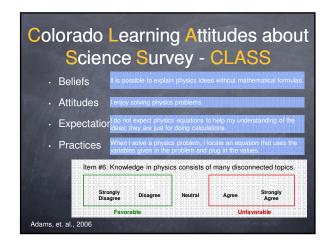
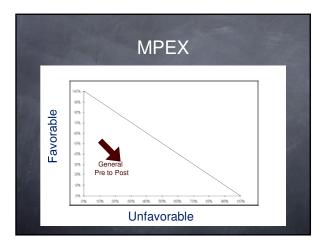


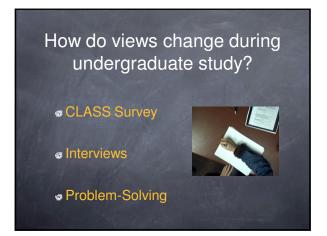
Kansas State University KSU Colloquium 4/5/2010

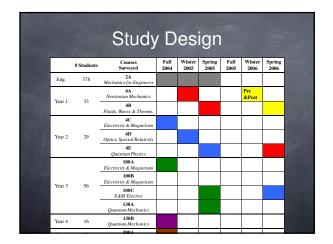
SU PER

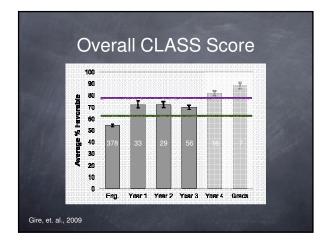
• "Physics is a performance art." • - Anonymous Student

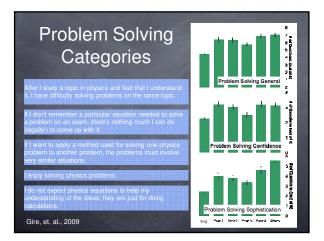

What I'm Going to Talk About

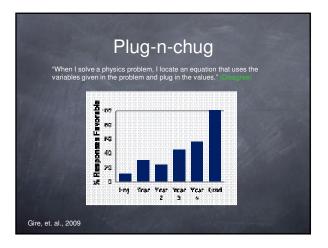

- Students' Views & Practices
- Representational Fluency
- Problem Difficulty




Beliefs about the Nature of Physics Knowledge


Variables	Expert-like	Novice-like				
Independence	Learns independently, believes in their own need to evaluate and understand	Takes what is given by authorities (teachers, text) without evaluation Believes that physics can be treated as separate pieces				
Coherence	Believes physics needs to be considered as a connected, consistent framework					
Concepts	Stresses understanding of underlying ideas	Focuses on memorizing and using formulas				

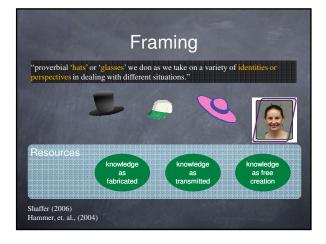




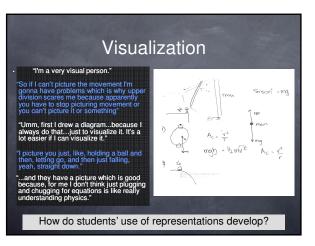
Zoe:	Umm, number eight when first start to learn a problem or a new concept and I'm unclear about If I'lt yand do this, but if I'm really well versed and I understand it completely then fill start doing. like I won't look for the equation I'l like think about the problem fiscill and whist theyre asking me for and. like for kinematics everyone goes to umm like, umm PE to KE I don't look at the equations, I start like ok well this object is gaining kinetic energy as it's losing kinetic energy and it kinda sets the problem for what its doing							
Interviewer:	Ok.							
Zoe:	And then like on now what equations do I use or what would make sense in this problem, whereas if I didn't know I'd be like ok well I know they are asking for GPE ahh and kinetic energy, and so I try an fit it together							
Interviewer:	Ok.							
Zoe:	So it depends on umm, how well I understand the concepts and how well they apply.							

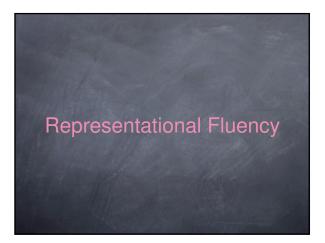
More Comments on Plug-n-Chug

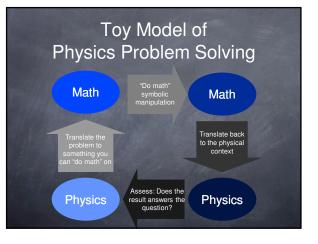
Hoban: Yeah, I try to do that whenever I can. It really depends on the problem. Like some problems it's obvious they just want you to plug into a formula, but in some it's not so obvious and you just have to think about it and so and with those it's just it's more thinking like cause a lot of the problems are just geared to plugging into the equation, you just put the pieces together and solve it ... but for other ones, it's... you can't just plug it in and work it that way, you have to think about it some

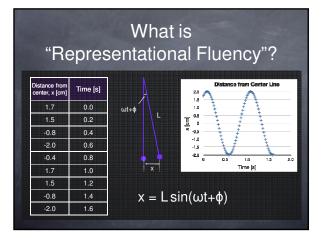

Gire, et. al., 2007

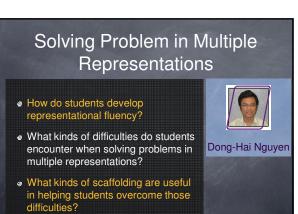
Summary of Views

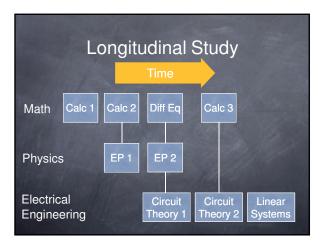

- a Views don't change much during first 3 years
- Views of physics majors' more favorable than engineering peers
- Some views related to problem solving less favorable in junior year
- Students recognize that plug-n-chug is not the same as conceptual understanding yet they report extensive use of it

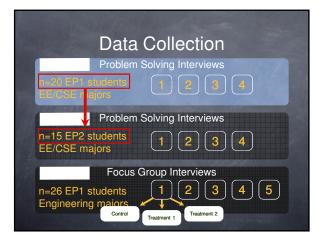

More Questions...

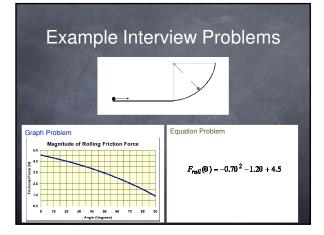

- What kinds of experiences help students develop more expert-like views?
- Are there other dimensions of views or problem solving practices that become more expert-like during undergraduate study?
- Can we help students to use conceptual reasoning more often throughout the physics curriculum?
- Are these results representative of all physics programs?
- Do views get more expert-like in the senior year? Why might that be expected?

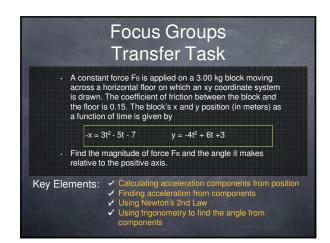


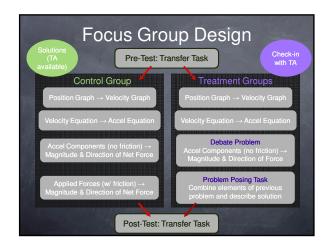

Framing in Physics:										
Student V	^{s.} Professional									
 Problems are well-structured assigned by instructor 	 Problems may be ill-structured, often identified by oneself 									
 Solutions are known, short 										
 Relevant knowledge-based is expected to be narrow 	 Relevant knowledge-based understood to be broad 									
 Mostly low-stakes 	Many high-stakes									
Presentation de-emphasized	Presentation important									
 Connections mainly identified by instructors 	 Re-representing relationships and making new connections 									





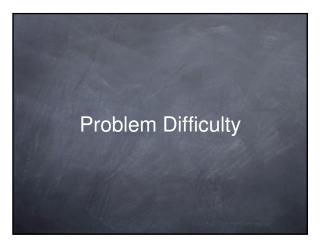






General Comments about Individual Interviews (Spring & Fall 2009)

- Students were able to solve problems with hints
- Students initially had trouble invoking integral
 area under the curve
- Students had difficulty coordinating geometric and algebraic modes of thinking
- Little evidence for integration = accumulation



	ocu	s Grol	up 2 Res	uits						
Magnitude of Force Angle of Force										
Graph	Pre	Post	Graph	Pre	Pos					
Control	0/10	1/10	Control	1/10	2/10					
Treatment	2/14	6/14	Treatment	1/14	5/14					
Fisher's Exact Test	0.33	0.09	Fisher's Exact Test	0.51	0.26					
Equation	Pre	Post	Equation	Pre	Pos					
Control	0/10	2/10	Control	1/10	4/10					
Treatment	2/14	10/14	Treatment	6/14	4/14					
Fisher's Exact Test	0.33	0.02	Fisher's Exact Test	0.09	0.29					

Summary Representational Fluency

- An issue with representational fluency is coordinating geometric and algebraic reasoning.
- Research-based worksheets are showing some preliminary success.
- Manipulating students' framing for debate and problem posing helps students process/organize knowledge in different ways.

Research Questions

- How do students' and instructors' estimation of difficulty compare?
- How do students' estimation of difficulty depend on representation?
- How does the complexity of a problem affect its perceived difficulty?

ECR Project

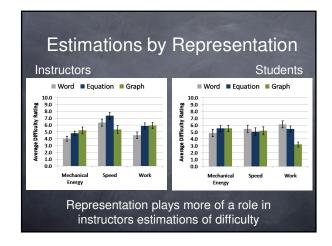
- Developed a Survey of Problem Difficulty Estimation (SPDE)
- SPDE → Students & Instructors
- Developed a rubric for textbook style physics problems.
- Correlation between SPDE and the rubric

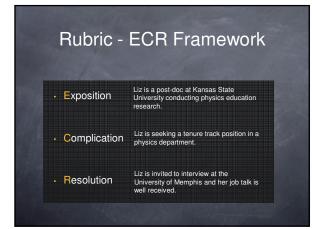
SPDE (Survey of Problem Difficulty Estimation)

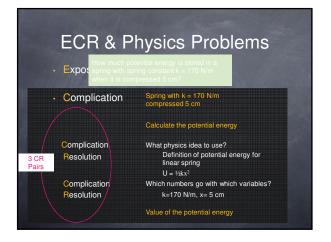
- a 16 Work & Mechanical Energy problems
 - Halliday, Resnick & Walker, 7th Ed.
 - Context Rich Problems

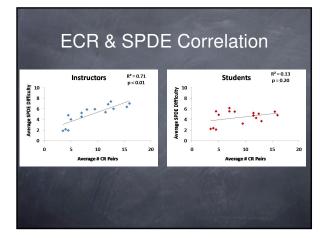
Rate 10 pt Likert-Scale

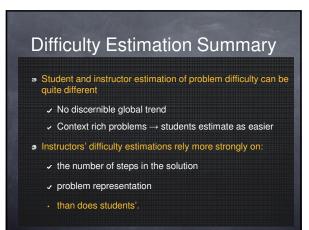
Numbers, symbols, equations, graphs, pictures

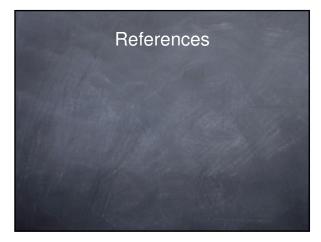

 Question
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16

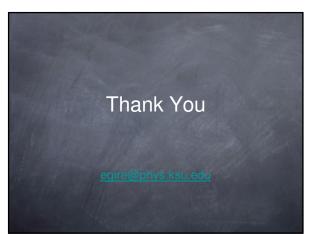

 $1 \rightarrow Easiest$ 10 $\rightarrow Most Difficult$


Solve & Rate


Online Delivery


SPDE \rightarrow Students & Instructors																	
 15 Freshman Physics Majors "Estimate the difficulty" 14 Instructors "Estimate the difficulty for a student" 																	
Inde																	
	P1	P2	P3	P4	P5	P6	P7	P 8	P 9	P10	P11	P12	P13	P14	P15	P16	
P-value	71	.85	.96	.10	.04		.01	.24	.16	.79	.01	.01	.00	.95	.55	.00	
Median Student	2	2	2	5	6	5	4	6	6	6	5	5	4	6	6	3	
Median Instructor	2	2	2	4	5	6	6	7	4.5	6	Z	7	7	5	5	6	




Future Directions

- Compare correct response rate with difficulty estimation & ECR score
- Interviews with instructors and students to determine criteria for difficulty
- ➡Other physics topics

Overall Summary

- Physics majors' overall views about physics knowledge are fairly stable
- Framing may be an important aspect of developing expert-like views and representational competence.
- Different views progress differently sense-making and problemsolving
- Coordinating geometric and algebraic reasoning is difficult for students - preliminary progress on a research-based worksheets
- Students' and Instructors' estimations of problem difficulty rely on number of steps and problem representation differently

