Assessing Efficiency & Innovation in Problem Solving

N. Sanjay Rebello

Elizabeth Gire

Kansas State University

Physics Education Research Group

Kansas State University

Supported in part by grants from the National Science Foundation

Efficiency & Innovation

Schwartz, Bransford & Sears (2005)

Efficiency

- Ability to "rapidly retrieve and accurately apply appropriate knowledge and skills to solve a problem"
- "The best way to be efficient is to practice tasks and gain experiences with ... problems so that they become 'routine' and easy to solve later."

Innovation

- "Often requires a movement away from what is momentarily most efficient for the individual."
- Abandon assumptions that "put people in a box, or more technically, constrained the problem spaces within which they work."

EFFICIENCY →

Explore the extent to which these ideas can inform our perspectives on physics problem solving.

- What aspects of problem solving do these instructors associate with 'efficiency' and 'innovation'?
- What kinds of problems do these instructors create when testing for 'efficiency' and 'innovation'?

- Setting: Discussion group at weekly seminar attended by faculty and grad students.
- Participants:
 - 3 experienced faculty (Physics, Math, Chemistry) familiar with educational research.
 - 8 PER grad students & post-docs.
- Format:
 - Groups of 2-3 participants worked on discussion tasks.
 - Reconvened to share ideas with rest larger group.

Discussion Q1: Efficiency

What *elements* of a problem in introductory college math or science assess **efficiency**?

- Do have
 - "Time restrictions, " "Many problems in little time."
 - "Resource restrictions"
- Need to Know
 - "has seen problem before."
 - "memorized equations, definitions."
 - "If hint in the problem gives away difficult, innovative part."
- Asked to do
 - "rote algebra steps."
 - "Same calculation multiple times in problem/problem set."

Discussion Q2: Innovation

What *elements* of a problem in introductory college math or science assess **innovation**?

- What is New
 - "Crazy new context."
 - "New geometries," "All examples are x, new problem is y"
 - "Changing Representations."
 - "Setting up new equations."
 - "Changing initial conditions," or "thing you are solving for"
- Asked to do
 - "Look at work" done by others.
 - "Changing steps in the process."
 - "Combining several principles."
 - "Turning a problem we don't know into one that we know"

Discussion Q3: Problem Creation

- Create a problem that may be typically asked in intro. physics (calc- or algebra-based)
- Identify elements in problem that contribute toward assessing
 - Efficiency
 - Innovation

Example Problem Created

Assumption: Students have already learned to find the frequency of *single* mass spring system

Problem: Find the frequency of the following massspring systems

10

Another Example Problem

Assumption: Students already know:

- Constant acceleration motion,
- Independence of x and y motion

Problem: A supply plane needs to drop its package at a specific target. If the plane is flying 'h' meters above the ground at 'v' mph, how far from the target should the plane drop its load?

Efficiency: Using 1-D equations & converting units. **Innovation**: 1D + 1D = 2D.

What we've learned so far

Efficiency assessed by problem elements that

- have time or resource restrictions,
- demand well prepared prior knowledge
- require familiar steps, repeated multiple times.
- Innovation assessed by problem elements that
 - present novel, unfamiliar situations.
 - demand combining different ideas, creating new ones
 - require recasting problem into one that is solvable.

Problems typically have elements that require both efficiency & innovation

What are our next steps

- Survey more instructors & students about views of efficiency & innovation in problem solving.
- Based on this input, develop a rubric to score problems on 'efficiency' & 'innovation' scales.
- Place problems in a 2-D 'efficiency' and 'innovation' space.

- Provide a lens to assess students' problem solving abilities across both dimensions 'efficiency' and 'innovation'.
- Help instructors design problem solving experiences that lie within the 'Optimal Adaptability Corridor'.

For more information contact

Sanjay Rebello (<u>srebello@phys.ksu.edu</u>)

Elizabeth Gire (<u>egire@phys.ksu.edu</u>)