A Protocol for Classifying Sophistication of Students' Reasoning

Mojgan Matloob
Sytil Murphy & Dean Zollman
Kansas State University
Cynthia Sunal & Dennis Sunal
University of Alabama
Cheryl Mason
San Diego State University

Project

NSEUS\(^1\) is looking at:

- Impact of reformed undergraduate science courses on student outcomes
 - Reformed \Rightarrow Inquiry oriented strategies with elementary education majors

\(^1\)National Study of Education in Undergraduate Science
Research Questions

- Can we classify students’ reasoning in terms of their responses to written content questions? (Questions with special features)
- Can students’ reasoning across the disciplines be compared?

Example from Biology

- Use Central Dogma of Biology: DNA \rightarrow RNA \rightarrow Protein to describe the series of events that would follow the loss of ozone from the atmosphere and subsequently lead to cancer.
Hierarchies in Level of Thought Processes

- **Lowest Level Sample 1**
 - Skin burn, peel → reproduction of cells → make up for dead cells → cancer

- **Levels in between Sample 2**
 - UV → DNA replication → mutation → Multiply cancerous cells

- **Highest Level Sample 3**
 - DNA → mutation with cancer cells → replicate DNA → translation → 2 new DNA strands with new nucleotides → cancer mutation

Classify Knowledge and Cognitive Processes

Revised Taxonomy (Anderson & Krathwoll, 2001):

<table>
<thead>
<tr>
<th>Knowledge Dimension</th>
<th>The Cognitive Process Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Remember</td>
</tr>
<tr>
<td></td>
<td>Infer, Compare, Explain, Interpret</td>
</tr>
</tbody>
</table>

- **Factual Knowledge**
- **Conceptual Knowledge**
 - Schema
 - Classification
 - Principles
 - Theories
- **Procedural Knowledge**
 - Skills, Tools, Rules, Methods
Rubric-Analyze students’ Responses

<table>
<thead>
<tr>
<th>Factual</th>
<th>Poor Performance</th>
<th>Developed</th>
<th>In-depth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conceptual</td>
<td>Poor Performance</td>
<td>Developed</td>
<td>In-depth</td>
</tr>
<tr>
<td>Procedural</td>
<td>Poor Performance</td>
<td>Developed</td>
<td>In-depth</td>
</tr>
</tbody>
</table>

2-Wiggins and McTighe (1998)

Example: Moon Phases

- You look outside and see a first quarter moon. Suppose that an astronaut were on the moon looking at Earth. Make a sketch of The Earth as seen by the astronaut. How will the illuminated portion of the Earth appear different three days later?
Response 1

“The astronaut would see a 3rd quarter, waning moon. The moon will have moved slightly more in its evolution, making earth see the moon as slightly more than 1st quarter. In contrast the earth would appear less full to the astronaut on the moon.”

Response 2

“The earth illuminated portion would decrease same, it would be a waning gibbous instead of a third quarter. It be even a waning crescent almost a full earth, depending on the rotation.”
Response 3

“The earth would appear less illuminated because the Sun to Earth to moon angle would decrease since the Earth moves in a counterclockwise direction to the Sun”

Data Analysis

<table>
<thead>
<tr>
<th></th>
<th>Factual</th>
<th>Conceptual</th>
<th>Procedural</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>P</td>
<td>D</td>
<td>I</td>
</tr>
<tr>
<td>Bio (N=56)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>27%</td>
<td>48%</td>
<td>25%</td>
</tr>
<tr>
<td>Moon (N=50)</td>
<td>26%</td>
<td>36%</td>
<td>38%</td>
</tr>
</tbody>
</table>

P=Poor, D=Developed, I=In-depth
Data Analysis

<table>
<thead>
<tr>
<th>Compare</th>
<th>Infer</th>
<th>Apply</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>D</td>
<td>I</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bio</td>
<td>57%</td>
<td>25%</td>
</tr>
<tr>
<td>(N=56)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moon</td>
<td>62%</td>
<td>30%</td>
</tr>
<tr>
<td>(N=50)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P=Poor, D=Developed, I=In-depth

Conclusions

- Coding scheme that captures specific aspects of students’ reasoning
- Pattern in students’ reasoning (N=700):
 - The occurrence of higher levels of cognitive processing was rare
 - Procedural knowledge is the least prevalent of all types of knowledge
- Comparison across discipline (N=700)
 - Some differences (Knowledge type)
 - No significant differences (Cognitive process)
Thank You

Poster session
A Method for Classifying Students' Understanding of Conceptual Structures
PST2B-11
Tue 01/11, 8:30PM - 9:15PM