Research Designs to Test and Refine the Pathway Active Learning Environment

Christopher M. Nakamura, Sytil K. Murphy, Dean Zollman
Kansas State University Physics Department

Michael Christel and Scott Stevens
Carnegie Mellon University Entertainment Technology Center

AAPT Winter National Meeting 2011 Jacksonville, Fla
January, 11 2011

This work is supported in part by U.S. National Science Foundation under grant numbers REC-0632587 and REC-0632657
Project Overview

Pathway Active Learning Environment

• Develop an interactive online synthetic tutor
 – Targeted at high school & intro college physics students
 – For supplemental instruction at home
 – To study student learning processes

• Seek to exploit benefits of human tutoring\(^1\)
 – Interaction is mostly student-centered\(^2\)
 – Students must self-explain\(^2\)
 – Students must challenge their constructed explanations\(^2\)

\(^1\)Bloom (1984) \quad \(^2\)Chi et. al (2004)
Active Learning Environment

Two Components

• Guiding Lessons
• Synthetic Tutor (SI)
Active Learning Environment

Two Components

• Guiding Lessons
• Synthetic Tutor (SI)
Active Learning Environment

Two Components

• Guiding Lessons

• Synthetic Tutor (SI)
Active Learning Environment

• Three lessons cover Newton’s Laws

• Can be thought of as “problems in video contexts”

• Can involve textbook-style problems & questions, observation & measurement, or both

• Connects to the real-world

• Uses established pedagogy

3 Karplus & Butts (1977)
Active Learning Environment

- Can answer natural language questions
- “Quickstart” menus enable selection of questions
- Multimedia can support tutors’ verbal responses
- Attempts to develop a synthetic social interaction
- Currently offers two tutors
- 7 different experiences total

4. Okita et al. 2008
Factors in Testing the PALE

• PALE logs (through student accounts):
 – student responses
 – changes to responses
 – queries to SI tutor
 – several other types of actions

• PALE logs these with a time stamp for time-resolved analysis

• PALE does not log facial expressions, thoughts, feelings, or mutterings
Three-modes of Testing

- One-on-one interview setting
- In-classroom setting
- At-home setting
Three-modes of Testing

• One-on-one interview setting
 – Observe details of use that the log would miss
 – Get student’s immediate feedback
 – Cross-check on physics knowledge

• In-classroom setting
 – Access the student population in a controlled environment and encourage completion
 – Teacher can observe and cite difficulties

• At-home setting
 – Test under ultimate design condition: This is a system that is to be used at home
One-on-one Interview Mode

Testing PALE Fall 2010

- Algebra-based college physics students (N = 22)
- All 7 PALE experiences were used
- Volunteers were solicited for modest compensation
- One session per week for three weeks.
- Worked on a lesson for 1 hr. and discussed the lesson and their work for ~30 min.
- Interviews were conducted by SI tutors
In-class Mode

Testing PALE Fall 2010

- Five classes of highschool physics students (n = 12, 13, 10, 8, 16; N = 59)
- Students completed the lessons in-class under the supervision of the classroom teacher.
- 4 of the PALE experiences were used (One tutor was eliminated)
At-home Usage Mode

Testing PALE Fall 2010

• Concept-based college physics students, mostly elementary ed. majors in a large enrollment class (N = 107)
• Students were assigned the completion of one lesson per week for a homework grade
• 4 of the PALE experiences were used (One tutor was eliminated)
Data Analysis

Schematic of a data set

<table>
<thead>
<tr>
<th>Student 1</th>
<th>Q₁</th>
<th>A₁</th>
<th>A₂</th>
<th>Q₂</th>
<th>A₃</th>
<th>Q₃</th>
<th>A₄</th>
<th>A₅</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student 2</td>
<td>A₁</td>
<td>A₂</td>
<td>A₃</td>
<td>Q₁</td>
<td>Q₂</td>
<td>A₄</td>
<td>Q₃</td>
<td>A₅</td>
</tr>
<tr>
<td>Student 3</td>
<td>A₁</td>
<td>Q₁</td>
<td>A₂</td>
<td>Q₂</td>
<td>Q₃</td>
<td>Q₄</td>
<td>A₃</td>
<td>Q₅</td>
</tr>
<tr>
<td>Student 4</td>
<td>A₁</td>
<td>A₂</td>
<td>A₃</td>
<td>Q₁</td>
<td>Q₂</td>
<td>Q₃</td>
<td>A₄</td>
<td>A₅</td>
</tr>
<tr>
<td>Student 5</td>
<td>A₁</td>
<td>Q₁</td>
<td>Q₂</td>
<td>A₂</td>
<td>Q₃</td>
<td>Q₄</td>
<td>A₃</td>
<td>Q₅</td>
</tr>
<tr>
<td>Student 6</td>
<td>A₁</td>
<td>A₂</td>
<td>A₃</td>
<td>A₄</td>
<td>A₅</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Additionally we have
• Video recordings of algebra-based students’ usage
• Transcripts of algebra-based students’ interviews
• Teachers’ comments and observations
Data Analysis

Multi-faceted analysis procedure is needed

• Quantitative analysis & data-mining of PALE log

• Phenomenographic analysis of interview data

• Integrative procedure to obtain a complete picture

• This is an ongoing effort
Summary & Future Work

Summary

• Collected three complimentary data sets with PALE
• Each addresses different but related aspects of PALE testing
• Multi-faceted analysis techniques will likely be needed to extract a clear picture of PALE’s efficacy

On-going Efforts

• Continue data analysis efforts
• Continue acquiring data in different settings with different student populations
References

The End

Thank you

Contact Information: cnakamur@phys.ksu.edu