Bound States – Getting Started

Goals and Introduction

You now actually have all of the tools that you need in order to find wave functions for any piecewise constant potential but you have yet to study one of the most important topics of quantum mechanics, the bound state.  Probably about half of all current ongoing research and historical research using quantum mechanics involves bound states.  One of the historical puzzles that led to the creation of quantum mechanics was the stability of a bound state - why electrons in atoms don't just spiral into the nucleus.  It is the bound states of nucleons and atoms and molecules and solids that allow the world and all of life to be what it is.  So why have we put off the bound state until last?  Because, in some ways, it is a more complicated problem than scattering or half scattering - requiring nearly all of the ideas and tools that you have learned about in the proceeding six in-gagements.

Classically, you know that bound states can exist anytime there is a local (or global) minimum in the potential energy function.  But you have already seen that a local minimum is insufficient to create a bound state in quantum mechanics.  Although long-lived resonances can form at certain energies in a local minimum, the tunneling of the wave function dictates that all such resonances will eventually decay and the quanta will "escape" the minimum.  In quantum mechanics a global minimum is necessary to allow the existence of bound states.

You also know that classical bound states exist for any value of total energy that is low enough to keep the particle in the minimum.  But you will soon see that this is not the case in quantum mechanics. 

The simple well – basic solutions

This simplest piecewise constant potential with a global minimum is the simple square well shown in Figure 1.
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Figure 1: A simple square well.

The situation represented by this potential diagram has classical bound states for any total energy between V2 and V1.

To find the wave functions for this potential you just need to write down the wave functions in each region (using sine-cosine functions in the center region and exponential type in the edge regions), write down the boundary conditions at the two region boundaries, and then solve the boundary conditions.  With three regions you will have six free parameters and four boundary conditions - leaving two free parameters after solving the boundary conditions - one of which is the overall amplitude of the wave function.  So there is really only one really free parameter.  But there is one additional complication, E<V in both the leftmost and rightmost regions.  This requires two additional constraining conditions on the parameters; you can't allow the wave functions to blow up as x→±∞.  So you must set C=0 in the right region and D=0 in the left region.  These two additional constraints over-determine the problem - making it possible that there may not be a solution at all!

It turns out that for most total energies there is not a wave function for this situation.  Wave functions only exist for a few select energies.  These special values of total energy are called eigenvalues or eigen-energies.  A quanta in this potential diagram can not have just any value of total energy - only eigen-energies are allowed.  It is this "quantization" of the total energy that gives quantum mechanics its name.

Exercises and Questions:

1) Based on your previous experience with half scattering, make sketches of what the eigenfunction must look like in the two edge regions.

2) Draw an x-axis and divide it into 3 regions.  In the two edge regions reproduce your eigenfunction sketches from above.  Now, complete the drawing of a possible eigenfunction by sketching a sinusoidal function in the center region that connects smoothly with the sketches in the edge regions.

3) If the center region is 3nm wide, what is the approximate wavelength of the sinusoidal function you drew above?  What would be the value of E-V for an electron with this wavelength?

4) Repeat exercise 2 and 3 but use a sinusoidal function with a different wavelength.

5) How are these sketches similar to and different from the resonances you have seen before?

V = V3





x = b





Region 1





Region 3





x = a





V = V2





V = V1





Region 2








_1043580889

