The Step Function – Applying and Expanding

Review

We are interested in the wave functions and eigenfunctions for a quanta in a situation represented by the energy diagram of Figure 1.
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Figure 1:  A step function potential.

Recall the you can write the general wave function for this situation by writing a free particle wave function in each region:
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(Equation 1)

The parameters A and B are constrained by the conditions that the eigenfunction and its first derivative must be continuous at x = a.  When a = 0, this leads to the conditions:
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(Equation 2)

To study the traveling wave solutions we instead write the general wave function as:
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(Equation 3)

In the exploration you studied:

· The shape these wave functions and their corresponding eigenfunctions and probability density functions.

· The time behavior of these functions.

· The graphical meaning of the boundary conditions.

During this and previous studies you saw:

· With A and B real, Equation 1 represents standing wave solutions.  

· The wavelength is shorter in region 1 (than in region 2) since E-V is greater there.

· When the boundary between regions happens to lie on an antinode of the eigenfunction the amplitude is the same in both regions.  In all other cases the amplitude is smaller in region 1 – with the amplitude difference being the greatest when the eigenfunction crosses the boundary at a node.  Classically, since the particle is moving faster in region 1 than in region 2, we expect the probability density to be smaller in region 1 than in region 2.  This basically fits with our observations of the eigenfunction amplitude – except in the odd case where the amplitudes are equal.

· In the wave functions of equation 3, the exp(ikx) term represents a quanta moving to the  right and the exp(-ikx) term represents a quanta moving to the left.  
· In WFE you could set either C or D to 0 in one region to get a pure traveling wave in that region but the boundary conditions always made the other region contain a superposition of a wave traveling right and a wave traveling left.
Further Discussion

The exploration section ended with the following question:  Which of the four cases (C1=0, C2=0, D1=0, D2=0) represent the two quantum analogues of the classical cases of a particle coming from the left or the right?  Since quanta have wave behavior they don't just go through potential changes like a classical particle would.  Like a classical wave (but unlike a classical particle), when we shoot a quanta at a region of space where the potential changes there is some probability of the quanta coming back at us – even if the potential is everywhere smaller than the total energy.  Part of the ‘wave’ hitting the change in potential is reflected back towards where it came from - the rest continues traveling the way it was going.  So if the original wave is coming from the right and moving left (D2≠0) then part of it will be reflected back to the right (C2≠0)  (causing a superposition in the right region) and the remainder will continue moving left (causing a traveling wave moving to the left in the left region (D1≠0)).  This is mathematically the case where you set C1=0.  (Similarly, the other possible case, where the quanta originally comes in from the left is represent by the case where you set D2=0.)  All other combinations of C and D represent superposition of these two basic cases.

As you will see later, as long as E>V in the leftmost and rightmost region there will always be two special traveling wave solutions for each value of E:  one representing a quanta coming in from the left and moving to the right (which may have left moving and right moving waves in every region except the rightmost region - where it only moves to the right) and one representing a quanta coming in from the right and moving to the left (which may have left moving and right moving waves in every region except the leftmost region - were it only moves to the left).  There will also be solutions that are superpositions of these two special solutions - which will include standing wave type solutions.  

This multitude of possible solutions stems from the fact that there are two free parameters in each of the regions and two boundary conditions at each boundary - but since there is always one more region than there are boundaries there will always be two overall free parameters after solving the boundary conditions.  One of these is always just the overall amplitude but the other gives rise to this multiplicity of solutions.  The two special traveling wave solutions are found by imposing one more condition on the parameters - that the rightmost (or leftmost) region has only right (or left) moving waves.

Exercises

Exercise 1:  Equation 2 represents the simplified boundary conditions for the wave functions of Equation 1 (for a=0).  Write down and simplify the boundary conditions for the wave functions of Equation 3(for any a – although this is harder than the a=0 case it will be useful later).  Solve them for C1 and D1 in terms of C2 and D2 and solve them for C2 and D2 in terms of C1 and D1.

Exercise 2:  The four solutions that you saw that had pure traveling waves in one of the 2 regions had either C = 0 or D = 0 in that region.  We claimed that you could never get that condition in both regions at once (except for the trivial case where C=D=0 in both regions).  This is markedly different from the classical case.  Classically we don’t expect a particle shot at this potential to ever go back the way it came from.  (Like Rutherford’s ‘bullet shot at tissue paper’.)  But there are no quantum solutions with C=0 (or D=0) in both regions (which would seem to represent a particle going in the same direction in both regions).  Use your result from exercise 1 to do the following four cases and thus show this claim is true:

a) Find C1 and D1 in terms of C2 when D2=0.  Then rewrite the wave functions of equation 3 in terms of C2 only.  This is a right going wave in the right region and a superposition of left and right going waves in the left region.

b) Find C1 and D1 in terms of D2 when C2=0.  Then rewrite the wave functions of equation 3 in terms of D2 only.  This is a left going wave in the right region and a superposition of left and right going waves in the left region.

c) Find C2 and D2 in terms of C1 when D1=0.  Then rewrite the wave functions of equation 3 in terms of C1 only.  This is a right going wave in the left region and a superposition of left and right going waves in the right region.

d) Find C2 and D2 in terms of D1 when C1=0.  Then rewrite the wave functions of equation 3 in terms of D1 only.  This is a left going wave in the left region and a superposition of left and right going waves in the right region.

Note that it is case a (case d) that represents the quanta impinging on this potential originally from the left (right).

Exercise 3:  A measure of the probability that a right going quanta coming from the left region will be reflected at this boundary is called the reflection coefficient, R and is calculated by the formula: 
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.  A related quantity, the transmission coefficient, T, is most easily calculated by:  
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.  Calculate T and R as a function of total energy for the wave function of case a of exercise 2.  (note that most of the terms will cancel out - leaving a fairly simple expression in terms of k1 and k2 - which depend only on V1, V2, and E).   Plug in V1=0eV and V2=2eV and make a graph of T and R vs. E for 2.0eV < E < 10.0eV.  What happens to T and R as E goes to ∞?  (They should be more like what you expect classically - are they?) You can look at the wave function in WFE and raise E towards 10eV or more to see this effect.

Exercise 4:  Repeat exercise 3 for a left going quanta coming from the right region.  Be careful about the subscripts and the definition of R…
Questions:

Question 1:  The classical probability density function for this problem is constant in each region.  Is the quantum probability density function?  Why or why not?

Question 2:  If E=V2 in this situation what will happen classically?  What do you expect to happen in the quantum case?

Projects:  

Project 1:  Calculate the classical and quantum probability density functions for this case and compare them for a wide variety of energy diagram parameters.  Try to discover any relationships that you can between the two. 
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