A Study of the Cognitive and Affective Impact of the
Cockpit Physics Curriculum on Students at the United States Air Force Academy
HEIDI MAUK GRUNER
ABSTRACT OF A DISSERTATION
KANSAS STATE UNIVERSITY
1997

The standard introductory college physics course has remained stagnant for over thirty years. Course texts have had few significant revisions, and the course has typically been taught in a lecture, laboratory, and recitation format. Studies show, however, that the majority of students do not learn physics well in this environment. Cockpit Physics at the United States Air Force Academy is an innovative computer-centered introductory physics course which abandons the traditional lecture-lab format in an effort to improve the standard introductory course.

Cockpit Physics uses small cooperative learning groups, the computer as an integrated learning tool, and the context of flight and Air Force applications. The purpose of this study was a control group comparison to determine if an interactive student-centered environment provides the social context and community for learning needed by students who do not traditionally purse a career in science. In light of the under-representation of women in physics, this study examines whether Cockpit Physics results in a more positive attitude toward physics for female students. Considered also are the experiences of the instructors.

To address these issues research questions related to student attitudes and academic performance were formulated. Answers to the attitudinal questions were sought with survey instruments, classroom observations, analysis of journals and individual interviews. Student learning of physics was assessed through class examinations and an inventory widely used in the physics community. A comparison is made to similar innovative curricula at other universities.

This study concludes that Cockpit Physics provided more peer interaction and a more hands-on environment for learning than the control classes but provided less one-on-one student teacher interaction. This lack of interaction with the teacher was a significant source of frustration for nontraditional students. Female students in particular struggled with the course and showed considerable attitudinal losses. Significant cognitive gains were not found. Data from this study indicate that cooperative learning with computer lessons may not be significantly superior to small traditional classes, while a comparison study indicates that it may be superior to the large lecture-lab-recitation format.

Returns to KSU Physics Education Group
Abstracts Menu | Research Menu | Home Page